Самодельная мобильная электростанция (генератор) (схемы и чертежи)

Самодельный асинхронный генератор

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).

Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.

Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.

Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • ИБП;
  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Читайте также:
Простой самодельный источник электроэнергии из сахара-рафинада

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):

Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
https://www.youtube.com/watch?v=ZQO5S9F72CQ

Часть 2
https://www.youtube.com/watch?v=nDCdADUZghs

Часть 3
https://www.youtube.com/watch?v=6M_w1b2xyM8

Часть 4
https://www.youtube.com/watch?v=CONHg7p-IYE

Часть 5
https://www.youtube.com/watch?v=z2YSqVh1vM8

Часть 6
https://www.youtube.com/watch?v=FNU83kOeSbA

Для упрощения подбора конденсаторов воспользуйтесь таблицей:

Мощность альтернатора (кВт-А) Ёмкость конденсатора (мкФ) на холостом ходу Ёмкость конденсатора (мкФ) при средней нагрузке Ёмкость конденсатора (мкФ) при полной нагрузке
2 28 36 60
3,5 45 56 100
5 60 75 138

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.

Рис. 7. Схема подключения конденсаторов

Советы по эксплуатации

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

Изготовим электрогенератор своими руками

Не всегда местные электросети способны полноценно обеспечивать электричеством дома, особенно, если это касается загородных дач и особняков. Перебои с постоянным электроснабжением или же его полное отсутствие заставляет искать альтернативные способы получения электричества. Одним из таких является использование электрогенератора – прибора, способного преобразовывать и накапливать электричество, используя для этого самые необычные ресурсы (энергия солнца, ветра, приливов и отливов). Его принцип работы достаточно простой, что делает возможным сделать электрогенератор своими руками. Возможно, самодельная модель не сможет конкурировать с аналогом заводской сборки, однако это отличный способ сэкономить более 10 000 рублей. Если рассматривать самодельный электрогенератор в качестве временного альтернативного источника электроснабжения, то вполне можно обойтись и самоделкой.

Как сделать электрогенератор, что для этого потребуется, а также какие нюансы придется учитывать, узнаем далее.

Сделать или купить?

Желание иметь в своем пользовании электрогенератор омрачается одной неприятностью – это высокая стоимость агрегата. Как ни крути, но самые маломощные модели имеют достаточно заоблачную стоимость – от 15 000 рублей и выше. Именно этот факт наталкивает на мысль о собственноручном создании генератора. Однако, сам процесс может быть затруднительным, если:

  • нет навыка в работе с инструментом и схемами;
  • нет опыта в создании подобных приборов;
  • не имеется в наличии необходимых деталей и запчастей.

Если же все это и огромное желание присутствуют, то можно попробовать собрать генератор, руководствуясь указаниями по сборке и приложенной схемой.

Не секрет, что покупной электрогенератор будет обладать более расширенным перечнем возможностей и функций, в то время как самоделка способна подводить и давать сбои в самые неподходящие моменты. Поэтому, покупать или делать своими руками – вопрос сугубо индивидуальный, требующий ответственного подхода.

Как работает электрогенератор

Принцип работы электрогенератора основывается на физическом явлении электромагнитной индукции. Проводник, проходящий через искусственно созданное электромагнитное поле, создает импульс, который преобразуется в постоянный ток.

Читайте также:
Бесплотинные гидроэлектростанции (ГЭС) своими руками

Генератор имеет двигатель, который способен вырабатывать электричество, сжигая в своих отсеках определенный вид топлива: бензин, газ или дизельное топливо. В свою очередь топливо, попадая в камеру сжигания, в процессе горения вырабатывает газ, который вращает коленчатый вал. Последний передает импульс ведомому валу, который уже способен предоставить определенное количество энергии на выходе.

Принцип работы устройства достаточно прост, но ровно до тех пор, пока нет необходимости рассмотрения каждого отдельного процесса. Нужно понимать, что закон Фарадея о принципах магнитной индукции, который используется в электрогенераторе, даст желаемый результат только тогда, когда будут созданы определенные условия. Главным из них является правильный расчет и соединение главных конструктивных единиц.

Независимо от потребляемого топлива и мощности, электрогенераторы имеют два основополагающих механизма: ротор и статор. Ротор необходим для создания электромагнитного поля, поэтому в его основе лежат магниты, равноудаленные от сердечника. Статор неподвижен, позволяет приводить ротор в движение, а также регулирует электромагнитное поле, за счет наличия металлических блоков из стали.

Вариант изготовления электрогенератора своими руками показан на видео

Асинхронный генератор: особенности и преимущества

По типу вращения ротора генераторы бывают синхронными и асинхронными. Первые имеют сложную конструкцию, а также более чувствительны к перепадам напряжения в сети, что сказывается на их продуктивности. Асинхронные, напротив, обладают более простым принципом действия, а также имеют отличные технические характеристики.

На роторе синхронного генератора помещаются магнитные катушки, что усложняет процесс движения ротора, в то время как ротор асинхронного генератора скорее похож на обычный маховик. Конструктивные особенности значительно влияют на КПД, и в синхронном есть его потери (до 11%). В асинхронном показатель потери энергии снижается до 5%, что делает его более востребованным не только в быту, но и в производстве.

Также есть и другие преимущества асинхронных генераторов:

  1. Более простой корпус защищает двигатель от попадания влаги и отработанного топлива, снижая необходимость частого технического обслуживания.
  2. Генератор устойчив к перепадам напряжения, а также имеет выпрямитель на выходе, который защищает подключенные электроприборы от поломки.
  3. Устройство способно служить источником питания для приборов, имеющих омическую нагрузку и высокую чувствительность к скачкам напряжения: сварочные аппараты, компьютерная и вычислительная техника, лампы накаливания.
  4. Обладает высоким КПД, который сочетается с минимальным клирфактором (показатель потери энергии, которая затрачивается на нагрев самого прибора).
  5. Имеет срок службы не менее 15 лет, поскольку все используемые детали достаточно надежные и не поддаются быстрому износу в процессе эксплуатации.

Все эти преимущества дают повод к использованию именно асинхронного агрегата, а простота его конструкции позволяет собрать в домашних условиях.

Вариант электрогенератора с асинхронным двигателем Toyota

С чего начать и что потребуется?

Для того, чтобы собрать небольшой асинхронный генератор своими руками, потребуются такие конструктивные детали:

  1. Двигатель – его можно сделать самостоятельно, но это достаточно длительный и трудоемкий, поэтому лучше сэкономить время и взять двигателя из старых нерабочих бытовых приборов. Хорошо подходят двигателя от стиральной машинки и дренажных насосов.
  2. Статор – лучше брать готовый вариант, где уже будет находиться обмотка.
  3. Провода электрические, а также изолента.
  4. Трансформатор или выпрямитель – нужен в том случае, когда получаемая на выходе электроэнергия имеет различную мощность.

Итак, приступим к работе, предварительно выполнив несколько подготовительных манипуляций, позволяющих произвести расчет мощности будущего генератора:

  1. Подключаем двигатель в сеть, чтобы определить скорость вращения. Для этого нужно воспользоваться специальным прибором – тахометром.
  2. Записываем полученную величину и прибавляем к ней 10%, так называемая компенсаторная величина, которая позволит исключить перенагрев двигателя в процессе работы.
  3. Подбираем конденсаторы, учитывая необходимую мощность. Для удобства величины можно взять из таблицы, расположенной ниже.

Поскольку электрогенератор продуцирует электричество, нужно позаботиться о его заземлении. Отсутствие заземления и плохая изоляция может стать причиной не только быстрого износа прибора, но и представлять опасность для жизни.

Сам процесс сборки крайне прост: к двигателю поочередно подсоединяем конденсаторы, руководствуясь указанной схемой. В схеме отображена поочередность подключения, при этом емкость каждого последующего конденсатора аналогична предыдущему.

Это все, что нужно для получения маломощного генератора, способного снабжать электричеством электропилу, болгарку или циркулярку.

Этот вариант создания генератора самый простой и удобный, но имеет свои нюансы:

  1. Во-первых, придется постоянно следить за температурой двигателя, не давая ему перегреваться.
  2. Во-вторых, если КПД будет снижаться прямопропорционально продолжительности работы – это норма. Поэтому время от времени генератору нужно давать отдыхать, снижая его температуру до 40-45°С.
  3. В-третьих, отсутствие автоматики заставит пользователя самостоятельно контролировать все процессы, периодически подсоединяя измерительные приборы к генератору (вольтметр, амперметр и тахометр).
  4. Перед сборкой важно подобрать правильное оборудование, рассчитав его основные показатели и характеристики. Чертеж и схема значительно облегчат процесс работы.
  5. Генератор на дровах или ветряной можно собрать подобным образом, однако для получения нужного напряжения на выходе потребуется достаточное количество энергоресурса.

Преимущества и недостатки собственноручной сборки

К положительным сторонам самодельного изготовления электрогенератора своими руками можно отнести:

  1. Повышение собственной самооценки, что крайне важно для мужчин. Удачно собранный агрегат может стать предметом не только альтернативного источника питания, но и гордости.
  2. Значительная экономия финансов.
  3. Способность создать такой аппарат, который бы отвечал всем заявленным требованиям.

Помимо этого, процесс может усложняться и иметь массу негативных последствий:

  1. Возможно, агрегат будет часто ломаться, что обусловлено невозможностью герметичного соединения всех отделов генератора.
  2. Неправильное подключение или расчет мощности приведет к неисправности генератора, а также снизит его продуктивность на порядок.
  3. Требуется определенный навык в работе, а также осторожность, поскольку все работы осуществляются с электричеством, с которым, как известно, шутки плохи.
Читайте также:
Трансформатор Тесла на качере Бровина своими руками и съем энергии

Интересный вариант. Электрогенератор из велосипеда

Заключение

Его мощности будет достаточно для обеспечения электроэнергией строительных приборов, а также небольших домашних приборов. Поскольку работа производится с электричеством, то у людей, не имеющих ни малейшего представления о серьезности и опасности проделываемых манипуляций, электрогенератор может не получиться.

Не секрет, что сделанный своими руками генератор, будет раз в 5 дешевле, но не факт, что его продуктивность может конкурировать с покупной моделью заводской сборки, оснащенной автоматикой. Отказаться от подобной затеи следует в таких случаях:

  • если нет уверенности в собственных силах и знаниях;
  • когда несколько попыток сборки не увенчались успехом;
  • если нет в наличии соответствующего оборудования и измерительных приборов;
  • если нет навыка в расчетах и подборе компонентов прибора, а также в чтении схем.

При наличии всех необходимых конструктивных деталей можно попробовать собрать агрегат своими руками. Если процедура не увенчалась успехом – всегда можно прибегнуть к помощи покупных моделей. Покупка электрогенератора имеет только один минус – это высокую стоимость. Однако в некоторых случаях она вполне оправдана точностью рабочего процесса, а также возможностью самостоятельного контроля всего процесса переработки и преобразования постоянного тока в переменный.

Схема подключения дизельного генератора

Схема подключения дизельного генератора

Функционирование любого современного производства и повседневный быт человека, пользующегося благами цивилизации, полностью зависят от электричества. При этом слепо положиться на существующие электрические сети мы не можем. В некоторых районах проживания и промышленной деятельности людей электрических сетей попросту нет. В других достаточно обширных местностях электрические сети работают нестабильно. Даже в мегаполисах и крупных обжитых городах временами случаются отключения электроснабжения.

Внезапный отказ системы электроснабжения зачастую приводит предприятия различной специализации к большим убыткам, не говоря уже о простых бытовых неудобствах в домашнем хозяйстве. На строительных площадках, когда полноценные электрические сети еще не проложены, но строительство уже ведется, без дизельной электростанции просто невозможно обойтись.

Дизель-генераторы и электростанции, предлагаемые компанией «Дизель», обеспечивают энергобезопасность индивидуальных и многоквартирных жилых домов, промышленных объектов в России и за рубежом.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).

Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.

Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.

Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • ИБП;
  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.
Читайте также:
Самодельный кондиционер из пластиковых бутылок, который работает без электричества

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Подключение дизельной электростанции

В практике построения систем электроснабжения существует стандартная схема подключения дизель электростанции (генератора).

Вариативность в стандартной схеме подключения появляется в зависимости от:

  • показателей выходного напряжения;
  • расположения блока контроля;
  • возможности автоматического включения резерва (наличия или отсутствия панели) – присутствует практически во всех современных моделях, поскольку предотвращает возможность включения генератора при наличии тока в сети.

Установка автоматического включения резерва подразумевает удорожание услуг монтажа и в целом данной инженерной системы, но экономить на данном элементе нельзя, поскольку одновременное включение в сеть генератора и централизованного тока может привести к пожарам и авариям.

Стандартная схема подключения в общем случае включает следующие элементы:

  • непосредственно дизель-генератор;
  • панель автоматического включения резерва;
  • перекидной рубильник (QS);
  • основная панель управления;
  • электрощитовая;
  • выключатель генераторного агрегата QF1;
  • выключатель, защищающий кабель собственных нужд QF2;
  • силовой кабель;
  • кабель управления;
  • кабель собственных нужд.

План подготовки дизельной электростанции к подключению

  • Дизель генератор необходимо защитить от воздействия атмосферных осадков и прямых солнечных лучей;
  • необходимо подключить систему принудительной вентиляции, чтобы предотвратить перегрев дизельгенератора во время работы;
  • также необходимо предотвратить резкие перепады температуры, которые могут спровоцировать сбои в работе генератора или его выход из строя;
  • схема подключения дизель генератора с автозапуском (дизельной электростанции) или без него должна включать защитные элементы, препятствующие проникновение в механизмы воздушных примесей (частиц пыли, выхлопных газов, химических веществ и т. д.);
  • в случае установки дизель электростанции на отрытой площадке схема подключения дизельного генератора должно включать элементы внешней защиты от механических повреждений (шумопоглощающие кожухи, контейнеры).

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Подключение дизельной электростанции

В практике построения систем электроснабжения существует стандартная схема подключения дизель электростанции (генератора).

Вариативность в стандартной схеме подключения появляется в зависимости от:

  • показателей выходного напряжения;
  • расположения блока контроля;
  • возможности автоматического включения резерва (наличия или отсутствия панели) – присутствует практически во всех современных моделях, поскольку предотвращает возможность включения генератора при наличии тока в сети.

Установка автоматического включения резерва подразумевает удорожание услуг монтажа и в целом данной инженерной системы, но экономить на данном элементе нельзя, поскольку одновременное включение в сеть генератора и централизованного тока может привести к пожарам и авариям.

Стандартная схема подключения в общем случае включает следующие элементы:

  • непосредственно дизель-генератор;
  • панель автоматического включения резерва;
  • перекидной рубильник (QS);
  • основная панель управления;
  • электрощитовая;
  • выключатель генераторного агрегата QF1;
  • выключатель, защищающий кабель собственных нужд QF2;
  • силовой кабель;
  • кабель управления;
  • кабель собственных нужд.

План подготовки дизельной электростанции к подключению

  • Дизель генератор необходимо защитить от воздействия атмосферных осадков и прямых солнечных лучей;
  • необходимо подключить систему принудительной вентиляции, чтобы предотвратить перегрев дизельгенератора во время работы;
  • также необходимо предотвратить резкие перепады температуры, которые могут спровоцировать сбои в работе генератора или его выход из строя;
  • схема подключения дизель генератора с автозапуском (дизельной электростанции) или без него должна включать защитные элементы, препятствующие проникновение в механизмы воздушных примесей (частиц пыли, выхлопных газов, химических веществ и т. д.);
  • в случае установки дизель электростанции на отрытой площадке схема подключения дизельного генератора должно включать элементы внешней защиты от механических повреждений (шумопоглощающие кожухи, контейнеры).

Советы по эксплуатации

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

Основные функциональные характеристики современных дизельных электростанций

В процессе подбора электрооборудования данного типа очень важно консультироваться с профессиональными инженерами-электриками, знающими типологию и специфику современных дизель генераторов.

В самом общем виде основными параметрами для дизель-генератора являются:

  • вид и частота тока;
  • рабочая мощность;
  • тип генератора;
  • опции, обеспечивающие экономичный расход электроэнергии.

Установку и настройку дизель-генератора следует доверять только профессионалам, поскольку от того, насколько качественно она будет выполнена, в целом зависит срок службы и надежность агрегата в эксплуатации.

Советы по эксплуатации

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

Читайте также:
Солнечный коллектор (фото, расчет, пошагово)

Генератор постоянного тока своими руками: пошаговая схема сборки простого генератора в домашних условиях (чертежи + описание)

Для комфортной жизни необходимо, чтобы электричество подавалось в дом в любой момент. Но не в любой местности это требование соблюдается. В частности, на дачах свет могут периодически отключать на несколько часов. Генератор постоянного тока — машина, которая позволит быть уверенным, что перебоев с электроэнергией не будет.

Стоит отметить, что некоторые виды данного устройства обычный человек может сделать своими руками. Фото генераторов постоянного тока позволяют понять, что это не слишком сложное устройство, изготовление которого по силам и неспециалисту.

Содержимое обзора

Принцип действия

Генератор постоянного тока — это машина, которая вырабатывает электрический ток после того как извне к нему поступает механическая энергия любого вида. Такое устройство также обозначается как силовая установка.

Принцип действия генератора постоянного тока основан на таком явлении как электромагнитная индукция. Известно, что если проводник движется в магнитном поле и проходит сквозь силовые линии, то в нем возникает электродвижущая сила. В итоге подобный проводник становится источником электроэнергии.

При этом в данных генераторах действует вариант данного принципа, в них проводник совершает вращательные движения.

Устройство генератора постоянного тока

Устройство генератора постоянного тока включает ротор и статор. Ротор — это подвижная часть и поступающая в генератор механическая энергия обеспечивает его вращение.

Такое вращение ротора приводит к возникновению ЭДС, вследствие чего и вырабатывается ток.

  • Ток, который будет выработан с использованием данного механизма, будет не слишком велик.
  • Чтобы увеличить его мощность, необходимо нарастить показатель магнитной индукции.

Для увеличения коэффициента полезного действия устройства необходимо подключить в выводам катушек, которыми оснащен статор, конденсаторы.

Синхронные и асинхронные генераторы

Синхронные разновидности генераторов сравнительно сложные по своей конструкции. Кроме того, данные установки страдают при перепадах напряжения, это снижает выработку тока. Однако асинхронные генераторы по своему устройству ощутимо проще. Помимо этого у них превосходные технические параметры.

У синхронного генератора непосредственно на роторе располагаются магнитные катушки. Данное решение затрудняет вращение ротора. С другой стороны ротор, которым оснащен асинхронный генератор, по своей конструкции подобен типичному маховику.

Данное различие отражается и на коэффициенте полезного действия. В синхронном генераторе потери энергии доходят до 11 процентов. В то же время в асинхронном генераторе они ограничены 5 процентами.

Наряду с этим асинхронные модели обладают целым рядом иных достоинств:

  • У них сравнительно надежный корпус, который защищает сам механизм от контакта с отработанным топливом или влагой, что уменьшает потребность в периодическом техническом обслуживании;
  • Они рассчитаны на использование в качестве источника питания для ламп накаливания, компьютеров и иной техники, а также для сварочных аппаратов, то есть для приборов со значительной чувствительностью к резким скачкам напряжения
  • Конструкция генераторов постоянного тока данного типа обеспечивает длительный срок его службы, все его элементы отличаются высокими показателями надежности.

Классификация устройств

Классификация генераторов постоянного тока предусматривает выделение двух главных видов, а именно:

  • Устройств с самовозбуждением;
  • И независимым возбуждением обмоток.

Самовозбуждение предполагает использование при функционировании машины электричества, которое получают от нее самой. В то же время генераторы с независимым возбуждением нуждаются в питании для запуска ее работы.

В качестве источников тока могут выступать как аккумуляторы, так и иные внешние устройства. Если генераторы имеют небольшую мощность, то могут применяться постоянные магниты, благодаря которым возникает магнитные поток.

Можно ли сделать генератор своими руками

Изготовить генератор самостоятельно будет выгодно по той причине, что цена на него сравнительно высока, Однако тому, кто хочет сделать это устройство, чтобы впоследствии им пользоваться, необходимо:

  • Обладать нужным набором навыков;
  • Иметь требуемые детали и инструменты.

Наиболее простой способ — использование асинхронного однофазного двигателя, который сравнительно легко превратить в генератор постоянного тока.

И в любом случае изготовленным собственными усилиями генератор будет обладать суженным набором навыков по сравнению с покупным. Помимо этого у самодельного устройства отсутствует гарантия производителя и если оно откажет в самый нужный момент, то пользователь не сможет обратиться к продавцу за оперативным бесплатным ремонтом.

Какие инструменты и материалы понадобятся

Наряду с двигателем необходимо приобрести выпрямительные диоды, которые превратят переменный ток в постоянный, а также полярные конденсаторы.

Для тех, кто планирует заряжать от аккумулятора планшет или смартфон также понадобится плата, оснащенная портом USB, что позволит получить 5 вольт, показатель напряжения, который используется при зарядке смартфонов.

Из инструментов потребуются:

  • Болгарка вместе с необходимым, набором дисков для работы как с металлом, так и деревом,а также шлифовальным диском;
  • Электродрель, рассчитанная на сверление металла;
  • Шуруповерт, необходим для изготовления аккумулятора больших размеров, которые предполагают использование значительно количества саморезов (по нескольких десятков) К шуруповерту могут прилагаться .головки, предназначенные для гайковерта либо одна универсальная головка, похожая на разводной ключ

После того как все инструменты собраны, переходят непосредственно к изготовлению генератора.

Как производится сборка

Для того, чтобы сделать асинхронный генератор, действуют следующим образом:

  • Двигатель размещают на несущей конструкции вместе с передаточным приводам.
  • Далее к обмоткам подключают переменные конденсаторы при этом подключение обмоток производится согласно схеме звезда, некоторые из концов этих обмоток идут в центре, где соприкасаются друг с другом, а прочие выводятся отдельно. ;
  • После этого конденсаторы соединяют в форме треугольника и к вершине этой фигуры подсоединяют концы обмоток.

Показатель мощности получившейся машины составляет от двух до пяти киловатт.

До запуска генератора на полную мощность требуется проверить, правильно ли он функционирует. Для этого нужно взять стандартную лампу накаливания с показателем мощности в десятки ватт. Требуется удостовериться, что генератор выдает напряжение без перебоев.

Читайте также:
Самодельный ветряк с генератором из коллекторного двигателя

Онлайн помощник домашнего мастера

Генератор своими руками: лучшие идеи и советы, как изготовить современный генератор своими руками (инструкция с фото и чертежами)

Электрогенераторы – это дополнительный источник энергии для дома. В случае большой удаленности основных электросетей он вполне может их заменить. Частые перебои электроэнергии вынуждают устанавливать генераторы переменного тока.

Стоят они не дешево, есть ли смысл тратить более 10 000 т.р. за устройство, если можно сделать генератор из электродвигателя самому? Разумеется, для этого пригодятся некоторые навыки электротехника, и инструменты. Главное не придется тратить деньги.

Можно собрать простой генератор своими руками, он будет актуален в том случае, если нужно покрыть временную недостачу электроэнергии. Для более серьезных дел он не пригоден, так как не обладает достаточной функциональностью и надежностью.

Естественно, в процессе ручной сборки есть немало трудностей. Требуемые детали и инструменты могут отсутствовать. Неимение опыта и навыков в подобных работах может наводить страх. Но сильное желание будет являться главным стимулом, и поможет преодолеть все трудоемкие процедуры.

Краткое содержимое статьи:

Реализация генератора и принцип его работы

Благодаря электромагнитной индукции в генераторе образуется электрический ток. Это происходит потому, что обмотка движется в искусственно созданном магнитном поле. В этом и есть принцип работы электрогенератора.

Движение генератору придает двигатель внутреннего сгорания малой мощности. Он может работать на бензине, газу или дизельном топливе.

В устройстве электрогенератора имеется ротор и статор. Магнитное поле создается при помощи ротора. На нем крепятся магниты. Статор является неподвижной частью генератора, и состоит из специальных стальных пластин и катушки. Между ротором и статором есть маленький зазор.

Есть два типа электрогенератора. Первый имеет синхронное вращение ротора. У него сложная конструкция, и низкий КПД. Во втором типе ротор вращается асинхронно. По принципу действия – он прост.

Асинхронные двигатели теряют минимум энергии, тогда как в синхронных генераторах показатель потерь доходит до 11%. Поэтому электродвигатели с асинхронным вращением ротора пользуются большой популярностью в бытовых приборах, и на различных заводах.

В процессе работы могут возникать перепады напряжения, они губительно сказываются на бытовых приборах. Для этого на выходных концах стоит выпрямитель.

Асинхронный генератор прост в техническом обслуживании. Его корпус надежен и герметичен. Можно не бояться за бытовые приборы, имеющие омическую нагрузку, и чувствительные к перепадам напряжения. Высокое КПД, и продолжительный период эксплуатации, делают устройство востребованным, к тому же его можно собрать самостоятельно.

Что понадобится для сборки генератора? Во-первых, нужно подобрать подходящий электродвигатель. Его можно взять от стиральной машинки. Самостоятельно делать статор не стоит, лучше воспользоваться готовым решением, где есть обмотки.

Стоит сразу запастись достаточным количество медных проводов, и изолирующими материалами. Так как любой генератор будет производить скачки напряжения, то понадобится выпрямитель.

По инструкции для генератора своими руками требуется сделать расчет мощности. Чтобы будущее устройство выдавало необходимую мощность, ему нужно дать число оборотов чуть больше номинальной мощности.

Воспользуемся тахометром и включим двигатель в сеть, так можно узнать скорость вращения ротора. К полученной величине нужно прибавить 10%, это позволит не доводить двигатель до перегрева.

Поддерживать необходимый уровень напряжения помогут конденсаторы. Они подбираются в зависимости от генератора. Например, для мощности в 2 кВт потребуется емкость конденсаторов в 60 мкФ. Таких деталей нужно 3шт с одинаковой емкостью. Чтобы устройство получилось безопасным, его нужно заземлить.

Процесс сборки

Тут все просто! К электродвигателю подключаются конденсаторы по схеме «треугольник». В процессе работы периодически нужно проверять температуру корпуса. Его нагрев может происходить из-за неправильно подобранных емкостей конденсатора.

За самодельным генератором, не обладающим автоматикой, нужно постоянно следить. Возникающий со временем нагрев будет понижать КПД. Тогда устройству нужно дать время для охлаждения. Время от времени следует замерять напряжение, число оборотов, и силу тока.

Неправильно рассчитанные характеристики не способны придать оборудованию необходимую мощность. Поэтому перед началом сборки, следует провести чертежные работы, и запастись схемами.

Вполне возможно, что самодельное устройство будут сопровождать частые поломки. Не стоит этому удивляться, так как герметичного монтажа всех элементов электрогенератора в домашних условиях получиться практически не может.

Итак, как сделать генератор из электродвигателя теперь надеюсь понятно. Если есть желание сконструировать аппарат, мощность которого должно хватать для одновременной работы бытовых приборов и осветительных ламп, или строительного инструмента, тогда нужно сложить их мощность и подобрать нужный двигатель. Желательно чтобы он был с небольшим запасом мощности.

Если при ручной сборке электрогенератора постигла неудача, не стоит отчаиваться. На рынке есть множество современных моделей, не нуждающихся в постоянном надзоре. Они могут быть различной мощности, и достаточно экономичными. В интернете есть фото генераторов, они помогут оценить габариты устройства. Единственный минус – это их дороговизна.

Как сделать генератор своими руками?

  1. Особенности самодельных генераторов
  2. Изготовление
  3. Рекомендации по эксплуатации

Электроэнергия от ближайшей ЛЭП не всегда подаётся бесперебойно. В дачных посёлках, где отключение света на один или несколько часов – частое явление, исключить перерывы с электроснабжением помогают генераторы. При наличии некоторых умений их можно сделать своими руками.

Особенности самодельных генераторов

Главная особенность, из-за которой многие пользователи всевозможных гаджетов решаются на подобную «самоделку» – возможность довести генератор до мощности, которой хватит не только на то, чтобы подзарядить мобильник, но и на снабжение ноутбука, телевизора и даже самодельной мини-морозилки, не говоря о десятке светодиодных ламп. Как правило, выбирается вариант устройства с наибольшей отдачей на выходе и наименьшими прилагаемыми усилиями.

Основой в любом случае является обратимый двигатель, работающий не только на превращение электричества в кинетическую (механическую) энергию, но и наоборот.

Чтобы изготовить такое устройство, пользователь должен обладать следующими познаниями.

  • Разбираться в электросхемах, уметь их читать. По одной из них и собирается подобное устройство.
  • Иметь представление о том, как работает электрогенератор. В основе его работы лежит закон Фарадея: число магнитных линий постоянного магнита, пронизывающего контур, должно меняться, иначе электричество вырабатываться не будет.
  • Обладать навыками электромонтажных и слесарных работ, уметь обращаться с электроинструментами. Раньше, в советское время, обязательной частью образовательной программы являлась не только физика, но и сопромат (раздел науки о сопротивлении материалов). Дело в том, что неправильно выбранные элементы несущих конструкций, соединённые между собой не так, как это требуется, при активной нагрузке быстро деформируются.
Читайте также:
Двигатель стирлинга своими руками. Пошаговое руководство

При наличии всех вышеперечисленных знаний и желания пользователь легко соберёт устройство, экономящее (по сравнению с промышленным) не один десяток тысяч рублей.

Изготовление

Сделать своими руками электрогенератор в домашних условиях несложно. Простой магнитный генератор собирается на основе любого из готовых двигателей: коллекторного, шагового и т. д. Собрать с нуля такую «самоделку» также можно, закрепив магниты на вращающейся оси и поместив их в прямоугольную катушку, вырабатывающую при их вращении электростатическое поле.

Электрогенератор на дровах – это, по сути, печь (в том числе и походная), на стенках которой закреплены элементы Пельтье, закрытые радиаторами. Суть эффекта Пельтье заключается в том, что пластины из разных проводников с одной стороны нагреваются, а с другой – охлаждаются. Это приводит к появлению электрического тока на полюсах такой пластины. Лучше всего подобная печь-генератор работает на морозе: наибольшая разница температур с каждой из сторон пластины приводит к выработке предельной мощности.

Паровой генератор – это классическая ТЭС в мини-исполнении. Печь с водяным контуром вырабатывает пар, подающийся на лопасти турбины. Тепловая энергия пара заставляет турбину крутить мотор-генератор, чей вал жёстко соединён с валом самой турбины. Такая система является замкнутой: она требует периодического контроля со стороны, а также наличия охлаждающего контура, в котором пар переконденсируется обратно в воду.

Подобная установка весьма массивна, в поход вы её с собой не возьмёте.

Генератор на базе асинхронного двигателя, работающего от сетевых 220 вольт – это устройство с тремя разнесёнными обмотками статора (неподвижной части мотора). Поскольку сам мотор работает от 220 или 380 (в трёхфазной сети) вольт, то и вырабатывать он будет такое же напряжение, стоит только раскрутить его вал хотя бы до 50 оборотов в секунду. Собирать его незачем: чтобы задействовать готовый агрегат, к обмоткам всего-навсего потребуется подключить дополнительные конденсаторы.

Инструменты и материалы

В качестве рабочего модуля электромагнитного (механического) генератора берётся подходящий двигатель. Используются двигатели нескольких типов: коллекторный (щёточный), бесколлекторный, шаговый (щётки и кольца не используются), синхронный и асинхронный. В зависимости от того, какой ток вырабатывается, применяют следующие детали и узлы.

  • Диоды выпрямительные. Преобразуют переменный ток в постоянный. В продаже имеются высокомощные диодные мосты, рассчитанные на ток в десятки ампер и напряжение до 50 В.
  • Полярные конденсаторы. Рассчитаны на постоянный ток. Играют роль сглаживающего фильтра, выравнивающего пульсации постоянного напряжения.
  • Дополнительная плата с USB-портом – преобразует напряжение в 1,5-20 вольт в нужные смартфонам, планшетам и большинству ноутбуков 5. Заказывается на AliExpress и в других интернет-магазинах.

Все эти радиокомпоненты нужны, когда мотор-генератор выдаёт не более пары десятков вольт.

Использование же, например, асинхронного двигателя потребует подключения ваших гаджетов и других устройств в обычном режиме – как от бытовой розетки.

Вспомогательные материалы могут быть любыми, так как они играют роль несущей конструкции:

  • деревянные бруски;
  • металлическая арматура;
  • профили;
  • крепёжные соединения (болты с гайками и шайбами, хомуты, скобы, струбцины, кронштейны, саморезы);
  • трубы любого диаметра и т. д.

В качестве электроинструментов применяются следующие изделия.

  • Болгарка с набором отрезных дисков (по металлу и по дереву) и шлифдиском (поставляется в виде наждачки-круга или универсального твёрдого диска).
  • Электродрель с набором свёрл по металлу. Если устанавливается, например, ветрогенератор с опорой на стене дома, то может потребоваться стандартный перфоратор с набором ударных свёрл и/или коронок по бетону. Перфоратор может также комплектоваться переходником под простые или конические свёрла и коронки по дереву.
  • Шуруповёрт. Потребуется, когда конструкция массивная, а вкрутить саморезы нужно в количестве от нескольких десятков. Может комплектоваться головками под переходник-гайковёрт или универсальной головкой под гайки, напоминающей разводной ключ.

Подготовив нужный инвентарь, приступим к процессу изготовления генераторной установки.

Схема сборки

Асинхронный генератор обладает свойством самосинхронизации: включение в работу без питания роторной обмотки, в которой возбуждается постоянное магнитное поле. Самовозбуждение обмотки короткозамкнутого ротора производится за счёт явления остаточной намагниченности. Чтобы собрать асинхронный генератор, следуйте нижеописанной инструкции.

  1. Разместите двигатель и передаточный привод на одной несущей конструкции.
  2. Подключите к обмоткам переменные (неполярные) конденсаторы. Сами обмотки включены по схеме «звезда»: одни их концы сходятся в центре (на корпус), другие же выведены отдельно.
  3. Конденсаторы соединятся по схеме «треугольник»: к его вершинам и подключаются свободные концы обмоток. Мощность двигателя – 2-5 киловатт, ёмкость конденсаторов – 28-138 микрофарад. Подберите такую ёмкость, чтобы вырабатываемое напряжение не снижалось – в зависимости от нагрузки, которую планируется использовать.

Перед запуском генератора произведите его тестирование. Тест можно выполнить с помощью обычной лампочки накаливания на несколько десятков ватт. Задача – обеспечить бесперебойную выдачу вырабатываемого напряжения. Потребуется установка, способная выдать 3000 оборотов в минуту. Например, мощный ветряк с редуктором (или цепным приводом), топливный двигатель от любого агрегата, гидротурбина на речке и т. д.

Дело в том, что человек в одиночку не сможет раскрутить любой мотор-генератор на мощность свыше 150 Вт, какие бы усилия ни прилагал. Здесь его возможности ограничены.

Изготовление асинхронного генератора – это простейшая переделка схемы готового такого же двигателя. Переточки ротора под неодимовые магниты не требуется, чего не скажешь об автомобильном генераторе, в котором питание роторной обмотки производится от аккумулятора. Кстати, большинство современных автомобильных генераторов выполняется на основе синхронного двигателя, в котором число оборотов в минуту жёстко связано с частотой вырабатываемого тока. Чтобы избавиться от необходимости питать обмотку ротора, можно переделать двигатель, сняв эту обмотку и проточив ось ротора под плоские магниты.

Читайте также:
Свободная энергия. Маховик системы Часа Кэмпбелла

Для сборки генератора на дровах сделайте следующее.

  1. На стенке буржуйки или пиролизной печи поместите радиатор «шипами» внутрь.
  2. Смонтируйте на нём один или несколько элементов Пельтье, ориентируясь по площади радиатора.
  3. Прикрепите к элементу Пельтье ещё один радиатор.
  4. Расположите установку на теневой стороне дома в специально отведённом месте. Стена не должна иметь утепления, а также быть слишком толстой в данной точке, поскольку нужен доступ к уличному холоду. Идеальный вариант – техническое помещение-отсек для такой печки, в котором есть втяжной вентканал для горения дров. Радиатор располагают рядом с ним с холодной стороны.

Запуск такого генератора осуществляется при поджигании дров. Когда дрова разгорятся, элемент Пельтье выдаст максимальную мощность. Он будет охлаждаться холодным воздухом, заходящим с улицы. Процесс же нагрева обеспечит стенка печки.

Для сборки коллекторного генератора рекомендуется воспользоваться следующей инструкцией.

  1. Поместите коллекторный мотор на несущую раму или другую конструкцию.
  2. Присоедините к его выводам сглаживающий конденсатор постоянного тока и плату преобразователя (DC-инвертор).
  3. Подсоедините к выходу DC-платы USB-порт (если она им не укомплектована).
  4. Расположите генератор на раме велосипеда либо изготовьте «ветряк» для него (например, из деталей от вентилятора с вышедшим из строя двигателем). В последнем случае для удобства «ветряка» размещают флюгер-хвостовик, поворачивающий конструкцию в ту сторону, куда дует ветер.

Подключите смартфон, планшет, мобильник, смарт-часы или иное устройство. Моторчик от принтера, например, вырабатывает до нескольких ватт мощности: так, при 12 вольтах, на которые он рассчитан, ток может достигать 600 миллиампер. Недостатки коллекторных двигателей: низкий КПД и частая замена щёток.

Работая каждый день по нескольку часов, щётки прослужат максимум 2-3 месяца.

Вместо коллекторного электродвигателя используйте шаговый: его КПД значительно выше, он способен прослужить не один десяток лет. В интернет-магазинах полно моделей, дающих напряжение в 12 вольт и ток в 1,8-4,2 ампера. Обмоток у шагового двигателя может быть 2, 3 или 4. Включив их последовательно, вы получите 24, 36 или 48 В. Параллельное включение даст пропорционально больший ампераж. «Разогнать» генератор до нужного номинала напряжения будет сложнее.

Рекомендации по эксплуатации

Используемый в уличных условиях генератор (ветряная электростанция для частного дома, велогенератор) рекомендуется защитить от дождя, дорожной грязи и других посторонних частиц, поместив его в отдельный корпус.

Устройство, работающее в уличных условиях в режиме многочасовой каждодневной нагрузки, нуждается в регулярной (хотя бы раз в полгода) смазке подшипников. Они, в свою очередь, есть в каждом моторе-генераторе.

Не допускается замыкание накоротко выводов двигателя и вспомогательной электроники. Замкнутый двигатель раскрутить в несколько раз сложнее за счёт тормозящей вращение ротора силы, пропорциональной нагрузке. Обмотки, замкнутые накоротко при крутящемся вале, могут сгореть. Полупроводниковая электроника (солнечные батареи, элементы Пельтье) тоже быстро выходит из строя, будучи замкнутой.

О том, как сделать генератор своими руками, смотрите далее.

Как сделать электростанцию на дровах своими руками

Электростанция на дровах – один из альтернативных способов запитать электроэнергией потребители.

Устройство способно при минимальных затратах на энергоресурсы получить электричество, причем даже в тех местах, где вообще отсутствует подвод энергосетей.

Такая энергетическая установка может стать отличным вариантом для владельцев дачных участков и загородных домов.

Также существуют миниатюрные версии, которые подойдут для любителей длительных походов и времяпрепровождений на природе. Но обо всем по порядку.

Особенности

Электростанция на дровах – изобретение далеко не новое, но современные технологии позволили несколько улучшить разработанные раньше устройства. Причем для получения электроэнергии используется несколько разных технологий.

К тому же, понятие «на дровах» несколько не точное, поскольку для функционирования такой станции подойдет любое твердое топливо (дрова, щепа, паллеты, уголь, кокс), в общем все, что может гореть.

Сразу отметим, что дрова, а точнее процесс их сгорания, выступает только в качестве источника энергии, обеспечивающего функционирование устройства, в котором происходит генерация электричества.

Основными достоинствами таких электростанций является:

  • Возможность использовать самое разное твердое топливо и его доступность;
  • Получение электроэнергии в любом месте;
  • Использование разных технологий позволяет получать электроэнергию с самыми разными параметрами (достаточной только для обычной подзарядки телефона и до запитки промышленного оборудования);
  • Может выступать и в качестве альтернативы, если перебои подачи электроэнергии – обычное дело, а также основным источником электричества.

Классический вариант

Как уже отмечено, в электростанции на дровах используется несколько технологий для получения электричества. Классической среди них является энергия пара, или попросту паровой двигатель.

Здесь все просто – дрова или любое другое топливо сгорая, разогревает воду, в результате чего она переходит в газообразное состояние – пар.

Читайте также:
Самодельный кондиционер из пластиковых бутылок, который работает без электричества

Полученный пар подается на турбину генераторной установки, и за счет вращения генератор вырабатывает электроэнергию.

Поскольку паровой двигатель и генераторная установка соединены в единый закрытый контур, то после прохождения турбины пар охлаждается, снова подается в котел, и весь процесс повторяется.

Такая схема электростанции – одна из самых простых, но у нее имеется ряд существенных недостатков, одним из которых является взрывоопасность.

После перехода воды в газообразное состояние давление в контуре значительно повышается, и если его не регулировать, то высока вероятность порыва трубопроводов.

И хоть в современных системах применяются целый набор клапанов, регулирующих давление, но все же работа парового двигателя требуется постоянного контроля.

К тому же обычная вода, используемая в этом двигателе, может стать причиной образования накипи на стенках труб, из-за чего понижается КПД станции (накипь ухудшает теплообмен и снижает пропускную способность труб).

Но сейчас эта проблема решается использованием дистиллированной воды, жидкостей, очищенных примесей, выпадающих в осадок, или же специальных газов.

Но с другой стороны эта электростанция может выполнять еще одну функцию – обогревать помещение.

Здесь все просто – после выполнения своей функции (вращения турбины) пар необходимо охладить, чтобы он снова перешел в жидкое состояние, для чего нужна система охлаждения или попросту – радиатора.

И если разместить этот радиатор в помещении, то в итоге от такой станции получим не только электроэнергию, но еще и тепло.

Другие варианты

Но паровой двигатель – это только одна из технологий, которая используется в электростанциях, работающих на твердом топливе, причем не самая подходящая для использования в бытовых условиях.

Также для получения электроэнергии сейчас используются:

  • Термоэлектрогенераторы (использующие принцип Пельтье);
  • Газогенераторы.

Термоэлектрогенераторы

Электростанции с генераторами, построенными по принципу Пельтье – достаточно интересный вариант.

Физик Пельтье обнаружил эффект, который сводится к тому, что при пропускании электроэнергии через проводники, состоящие из двух разнородных материалов, на одном из контактов происходит поглощение тепла, а на втором – выделение.

Причем эффект этот обратный – если с одной стороны проводник разогревать, а со второй – охлаждать, то в нем будет образовываться электроэнергия.

Именно обратный эффект используется в электростанциях на дровах. При сгорании они разогревают одну половину пластины (она и является термоэлектрогенератором), состоящую их кубиков, сделанных из разных металлов, а вторая же ее часть – охлаждается (для чего используются теплообменники), в результате чего на выводах пластины появляется электроэнергия.

Но есть у такого генератора несколько нюансов. Один из них – параметры выделяемой энергии напрямую зависят от разницы температуры на концах пластины, поэтому для их выравнивания и стабилизации необходимо использование регулятора напряжения.

Второй нюанс заключается в том, что выделяемая энергия – лишь побочный эффект, большая часть энергии при сгорании дров просто преобразуется в тепло. Из-за этого КПД такого типа станции не очень высокая.

К достоинствам электростанций с термоэлектрогенераторами относятся:

  • Длительный срок службы (нет подвижных частей);
  • Одновременно вырабатывается не только энергия, но и тепло, которое можно использоваться для обогрева или приготовления пищи;
  • Бесшумность работы.

Электростанции на дровах, использующие принцип Пельтье, — достаточно распространенный вариант, и выпускаются как портативные устройства, которые способны лишь выделить электроэнергии для зарядки маломощных потребителей (телефона, фонаря), так и промышленные, способные запитать мощные агрегаты.

Газогенераторы

Второй тип – это газогенераторы. Такое устройство можно использовать в нескольких направлениях, в том числе и получение электроэнергии.

Здесь стоит отметить, что сам по себе такой генератор не имеет никакого отношения к электричеству, поскольку его основная задача – выработать горючий газ.

Суть работы такого устройства сводится к тому, что в процессе окисления твердого топлива (его горения), выделяются газы, в том числе и горючие – водород, метан, СО, которые могут использоваться в самых разных целях.

К примеру, такие генераторы раньше применялись на авто, где обычные двигатели внутреннего сгорания отлично работали на выделяемом газе.

По причине постоянного удорожания топлива данные устройства некоторые автомобилисты и мотоциклисты уже в наше время начали устанавливать на свои машины.

То есть, чтобы получить электростанцию, достаточно иметь газогенератор, двигатель внутреннего сгорания и обычный генератор.

В первом элементе будет выделяться газ, который станет топливом для двигателя, а тот в свою очередь будет вращать ротор генератора, чтобы получить на выходе электроэнергию.

К достоинствам электростанций на газогенераторах относится:

  • Надежность конструкции самого газогенератора;
  • Получаемый газ можно использовать для работы двигателя внутреннего сгорания (который станет приводом для электрогенератора), газового котла, печи;
  • В зависимости от задействованного ДВС и электрогенератора можно получить электроэнергию даже для промышленных целей.

Основным недостатком газогенератора является громоздкость конструкции, поскольку она должна включать в себя котел, где происходят все процессы для получения газа, систему его охлаждения и очистки.

И если это устройство будет использоваться для получения электроэнергии, то дополнительно в состав станции должны также входить ДВС и электрогенератор.

Представители электростанций заводского изготовления

Отметим, что указанные варианты – термоэлектрогенератор и газогенератор сейчас являются приоритетными, поэтому выпускаются уже готовые станции для использования, как бытовые, так и промышленные.

Ниже приведено несколько из них:

  • Печь «Индигирка»;
  • Печь туристическая «BioLite CampStove»;
  • Электростанция «BioKIBOR»;
  • Электростанция «Эко» с газогенератором «Куб».

Обычная бытовая твердотопливная печь (сделанная по типу печи «Буржайка»), оснащенная термоэлектрогенератором Пельтье.

Отлично подойдет для дачных участков и небольших домов, поскольку достаточно компактна и ее можно перевозить в авто.

Основная энергия при сгорании дров идет на обогрев, но при этом имеющийся генератор позволяет получить также электроэнергию напряжением 12 В и мощностью 60 Вт.

Читайте также:
Бесплотинные гидроэлектростанции (ГЭС) своими руками

Печь «BioLite CampStove».

Тоже использует принцип Пельтье, но она еще более компакта (вес всего 1 кг), что позволяет брать ее в туристические походы, но и количество энергии, вырабатываемой генератором – еще меньше, но ее будет достаточно зарядить фонарь или телефон.

Тоже используется термоэлектрогенератор, но это уже – промышленный вариант.

Производитель по заказу может изготовить устройство, обеспечивающие на выходе электроэнергию мощностью от 5 кВт до 1 МВт. Но это влияет на размеры станции, а также потребляемое количество топлива.

К примеру, установка, выдающая 100 кВт, расходует 200 кг дров в час.

А вот электростанция «Эко» — газогенераторная. В ее конструкции используется газогенератор «Куб», бензиновый двигатель внутреннего сгорания и электрогенератор мощностью 15 кВт.

Помимо промышленных уже готовых решений, можно отдельно купить те же термоэлектрогенераторы Пельтье, но без печки и использовать его с любым источником тепла.

Самодельные станции

Также многие умельцы создают самодельные станции (обычно на основе газогенератора), которые после продают.

Все это указывает на то, что можно и самостоятельно изготовить электростанцию из подручных средств и использовать ее для своих целей.

Далее рассмотрим, как можно сделать устройство самостоятельно.

На основе термоэлектрогенератора.

Первый вариант – электростанция на основе пластины Пельтье. Сразу отметим, что изготовленное в домашних условиях устройство подойдет разве что для зарядки телефона, фонаря или для освещения с использованием светодиодных ламп.

Для изготовления потребуется:

  • Металлический корпус, который будет играть роль печи;
  • Пластина Пельтье (отдельно приобретается);
  • Регулятор напряжения с установленным USB-выходом;
  • Теплообменник или просто вентилятор для обеспечения охлаждения (можно взять компьютерный кулер).

Изготовление электростанции — очень простое:

  1. Изготавливаем печь. Берем металлический короб (к примеру, корпус от компьютера), разворачиваем так, чтобы печь не имела дна. В стенках внизу проделываем отверстия для подачи воздуха. Вверху можно установить решетку, на которую можно установить чайник и т. д.
  2. На заднюю стенку монтируем пластину;
  3. Сверху на пластину монтируем кулер;
  4. К выводам от пластины подключаем регулятор напряжения, от которого и запитываем кулер, а также делаем выводы для подключения потребителей.

Работает все просто: разжигаем дрова, по мере нагрева пластины на ее выводах начнется генерация электроэнергии, которая будет подаваться на регулятор напряжения. От него же начнет и работать кулер, обеспечивая охлаждение пластины.

Остается только подключить потребители и следить за процессом горения в печке (подкидывать своевременно дрова).

На основе газогенератора.

Второй способ сделать электростанцию – это изготовить газогенератор. Такое устройство значительно сложнее в изготовлении, но и выход электроэнергии – значительно больше.

Для его изготовления потребуется:

  • Цилиндрическая емкость (к примеру, разобранный газовый баллон). Она будет играть роль печки, поэтому следует предусмотреть люки для загрузки топлива и очистки твердых продуктов горения, а также подвод воздуха (потребуется вентилятор для принудительной подачи, чтобы обеспечить более лучший процесс горения) и вывод для газа.
  • Радиатор охлаждения (может быть изготовлен в виде змеевика), в котором газ будет охлаждаться.
  • Емкость для создания фильтра типа «Циклон».
  • Емкость для создания фильтра тонкой очистки газа.
  • Бензиновая генераторная установка (но можно просто взять любой бензиновый мотор).

После этого все необходимо соединить в единую конструкцию. От котла газ должен поступать на радиатор охлаждения, а после на «Циклон» и фильтр тонкой очистки. И только после этого полученный газ подается на двигатель.

Это указана принципиальная схема изготовления газогенератора. Исполнение же может быть самым разным.

К примеру, возможна установка механизма принудительной подачи твердого топлива из бункера, который, кстати, тоже будет запитываться от генератора, а также всевозможных контролирующих устройств.

Создавая электростанцию на основе эффекта Пельтье, особых проблем не возникнет, поскольку схема простая. Единственное, следует принимать некоторые меры безопасности, поскольку огонь в такой печке практически открытый.

А вот создавая газогенератор, следует учитывать множество нюансов, среди них — обеспечение герметичности на всех соединениях системы, по которой проходит газ.

Чтобы двигатель внутреннего сгорания нормально работал, следует побеспокоиться о качественной очистке газа (наличие примесей в нем недопустимо).

Газогенератор – конструкция громоздкая, поэтому для него необходимо правильно подобрать место, а также обеспечить нормальную вентиляцию, если он будет установлен в помещении.

Поскольку такие электростанции не новь, и любителями они изготавливаются уже сравнительно давно, то и отзывов о них накопилось немало.

В основном, все они положительные. Даже у самодельной печи с элементом Пельтье отмечается, что она полностью справляется с поставленной задачей. А что касается газогенераторов, то здесь наглядным примером может выступить установка таких устройств даже на современных авто, что говорит об их эффективности.

Плюсы и минусы электростанции на дровах

Электростанция на дровах – это:

  • Доступность топлива;
  • Возможность получить электроэнергию в любом месте;
  • Параметры получаемой электроэнергии – самые разные;
  • Можно сделать устройство и самому.
  • Среди недостатков же отмечается:
  • Не всегда высокое КПД;
  • Громоздкость конструкции;
  • В некоторых случаях получение электроэнергии – лишь побочный эффект;
  • Для получения электроэнергии для промышленного использования нужно сжечь большое количество топлива.

В целом, изготовление и использование электростанций, работающих на твердом топливе – вариант, заслуживающий внимания, и он может стать не только альтернативой электросетям, но еще и помочь в местах, удаленных от цивилизации.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: