Как работает бифилярная катушка Теслы

Патент Тесла (бифилярная катушка)

Сегодня мы рассмотрим один из ранних патентов Николы Тесла, – плоскую бифилярную (в два провода) катушку для создания, как указано в названии патента, мощных электромагнитов.

Патент этот я выбрал по нескольким причинам. Очень многие, не понимая сути изобретения, часто бросают реплику “попробуй использовать бифилярки Теслы, – получишь хороший прирост КПД в своих устройствах”. Причём, люди эти, даже отдалённо не предполагают, почему, собственно, такой способ намотки, вдруг, делает катушку более эффективной. Ведь, если приглядеться, то становится понятно, что ток направлен всегда в одну сторону (например, по часовой стрелке) во всех витках, – и чётных, относящихся к одной намотке, и не чётных, относящихся ко второй. то есть, точно так же, как и в плоской катушке с намоткой в один провод. И магнитное поле, возникающее в любом произвольном витке, точно так же мешает движению зарядов (тока) в следующем витке, как это происходит и в простой катушке. Более того, индуктивные бифилярки Теслы часто путают с неиндуктивными бифилярками Купера, в которых ток в произвольно выбранных двух соседних витках течёт в разных направлениях (и которые, по сути, являются статическими усилителями мощности и рождают ряд аномалий, в том числе и антигравитационные эффекты). Тогда же рождается параллельный вопрос, – если намотка в два провода улучшает параметры катушки, то почему бы ни намотать в три, четыре. провода, т.е. сделать трифилярную, квадрофилярную и т.д. катушку, и не увеличить этот положительный эффект ?

Отгадка приходит, как ни странно, с русским переводом самого патента. Всё дело в разнице потенциалов в двух соседних витках. Тесла подробно исследовал процесс индукции и самоиндукции, а так же потери, возникающие в катушках. Он выяснил, что если очень сильно повысить ёмкость катушки, то для данной частоты тока, понижается сопротивление в витках и эффект самоиндукции стремительно падает. Подробнее об этих соотношениях читайте в патенте.

Здесь на рисунке : верхняя кривая, – это величина, запасаемой энергии в бифилярной катушке Теслы, а нижняя кривая, – величина энергии в обычной плоской катушке, намотанной в один провод (опыт проведён в условиях резонанса). Также многие не догадываются, что катушка эта разрабатывалась Теслой исключительно для условий резонанса (последовательный LС-контур, резонанс напряжений), и в обычном виде он её не использовал (точнее – использовал, но об этом, как нибудь в другой раз). В резонансе на концах индуктивности (катушки) появляется потенциал гораздо более мощный, чем внешний управляющий сигнал контура (подаваемое напряжение). Но снять напрямую его от туда нельзя. При подключении нагрузки соотношение L и C резонансного контура нарушается (уменьшается индуктивность) и система выходит из резонанса. Сам Тесла (в свой ранний творческий период) и не ставил такой цели. Поэтому, название патента очень хорошо отражает суть изобретения.

В более поздний период Тесла, конечно же, возжелал отобрать эту колоссальную, появляющуюся в катушке мощность (энергию свободных вибраций). Здесь нам на руку играет тот факт, что катушка индуктивная. Т.е. её можно использовать в качестве одной из обмоток трансформатора. Если сделать трансформатор с асимметричной взаимоиндукцией первичной и вторичной обмотки, то можно на вторичную повесить нагрузку и наслаждаться халявой. Если нагрузка имеет статический характер (например, лампочка), то всё на порядок упрощается, – в этом случае, даже трансформатор не обязателен. Главное – всё точно рассчитать. Не буду здесь особо распространяться на эту тему, но очень скоро я напишу подробную статью (со всеми формулами и примерами) по резонансу, где обо всём расскажу. Ждите. А теперь, собственно, сам патент :

Тому, кого это может касаться.

Да будет известно, что я, Никола Тесла, гражданин США, проживающий в Нью-Йорке изобрёл полезное усовершенствование в катушках для электромагнитов и других аппаратов, которое ниже описано в сопровождении рисунков. В электромеханических аппаратах и системах переменного тока самоиндукционные катушки или проводники могут во многих случаях работать с потерями, что известно, как промышленная эффективность, и что приносит вред в различных аспектах. Эффект самоиндукции упомянутый выше, может быть нейтрализован ёмкостью тока определённой степени в соответствии с самоиндуктивностью и частотой тока. Это достигается использованием конденсаторов, собранных и применяемых как отдельный инструмент. Моё это изобретение имеет целью изготовить катушки совершенными и избежать вовлечение конденсаторов, которые дорогие, громоздкие и труднорегулируемые. Я заявляю, что в термин “катушка” я включаю понятия соленоиды или любые проводники различные части которых находятся во взаимоотношениях друг с другом и фактически повышают самоиндукцию. Я выяснил, что в каждой катушке существуют определённые взаимоотношения между её самоиндукцией и ёмкостью, что позволяет току данной частоты и потенциала проходить через неё с омическим сопротивлением (DL : здесь Тесла имеет в виду исчезновение реактивного сопротивления) или, другими словами, как если она работает без самоиндукции. Это происходит в результате взаимоотношений между характером тока и самоиндукцией и ёмкостью катушки, т.е. количество последнего достаточно для нейтрализации самоиндукции для данной частоты. Известно, что чем выше частота или разность потенциалов тока, тем меньше ёмкость требуется для нейтрализации самоиндукции, поэтому в любой катушке, особенно небольшой ёмкости, можно достичь поставленных целей, если добиться нужных условий. В обычных катушках разность потенциалов между витками или спиралями очень маленькая, поэтому пока они во взаимодействии с конденсаторами, они несут очень небольшую ёмкость и взаимоотношения между самоиндукцией и ёмкостью не такие, как при обычном состоянии, удовлетворяющем рассмотренным требованиям где ёмкость очень мала относительно самоиндукции.

Для достижения цели увеличения ёмкости любой катушки, я наматываю её таким образом, чтобы обеспечить наибольшую разность потенциалов между соседними витками, а поскольку энергия хранящаяся в катушке (считаем, как в конденсаторе) пропорциональна квадрату разности потенциалов между витками, то становится понятно, что я могу таким образом, посредством определённого расположения витков, достичь увеличение ёмкости.

Читайте также:
Обогрев солнечными лучами

Я изобразил в приложении чертёж, в соответствии с которым осуществил это изобретение.

Рис.1 – схема катушки, намотанной обычным способом. Рис.2 – схема катушки намотанной согласно изобретения.

Пусть -А- на Рис.1 обозначает любую катушку спиралей или витков, из которых она намотана и которые изолированы друг от друга. Предположим, что концы этой катушки показывают разность потенциалов 100 В и что она содержит 1000 витков. Тогда очевидно, что существует разность потенциалов в одну десятую вольта между двумя любыми смежными точками на соседних витках. Если теперь, как показано на Рис. 2, проводник -В- намотан параллельно проводнику -А- и изолирован от него, а конец -А- будет соединён с началом проводника -В-, тогда длина собранных вместе проводников будет такая же и число витков тоже самое (1000). И тогда разность потенциалов между любыми двумя точками проводников -А- и -В- будет 50 В, а т.к. ёмкостный эффект пропорционален квадрату этой разности, то энергия скопившаяся в катушке будет теперь в 250000 раз больше ! Следуя этому принципу теперь я могу намотать любое количество катушек, не только описанным выше путём, но любым другим известным способом но так, чтобы обеспечить такую разность потенциалов между соседними витками, которая обеспечит необходимую ёмкость чтобы нейтрализовать самоиндукцию для любого тока, который может иметь место. Емкость полученная таким образом имеет дополнительное преимущество в том, что распределяется равномерно, что является наиболее важным в большинстве случаев. И как результат, оба параметра, – эффективность и экономия, легче достигаются тогда, если размер катушек, разность потенциалов и частота тока увеличиваются. Катушки, состоящие из проводников в изоляторе и намотанные виток к витку и соединённые последовательно не являются новыми, и я не уделяю особого внимания для их описания. Однако, на что я обращаю внимание это то, что намотки другими способами могут привести к другим результатам. Применяя моё изобретение, специалисты в этой области должны хорошо понимать зависимость между понятиями ёмкость, самоиндукция, частота и разность потенциалов тока. Также как и понимать какая ёмкость достигается и какая намотка должна иметь место для каждого конкретного случая.

Я заявляю в своём изобретении :

1. Катушка для электрического аппарата, состоит из витков, которые образуют часть цепи и между которыми существует разность потенциалов, достаточная для обеспечения ёмкости в катушке способной нейтрализовать самоиндукцию, как было описано.

2. Катушка, состоящая их изолированных проводников, соединённых последовательно имеет такую разность потенциалов, чтобы создать в целой катушке достаточную ёмкость для нейтрализации её самоиндукции.

Как работает бифилярная катушка Теслы

Известны эффекты сопровождающие работу устройств, содержащих неориентированные контуры. С помощью неориентированных контуров типа электрических аналогов листа Мёбиуса получают нечто похожее на шаровые молнии. [ Шахпаронов И. М., «Излучение Козырева – Дирака и его влияние на животных»; http://www.physical-congress.spb.ru/russian/shahparonov/shahparonov.asp ]. Известен «конверторэнергии гравитационного поля» на основе электрического эквивалента ленты Мёбиуса. [ Niper, Hans. A. Revolution in Technik, Medizin, Gesellschaft. 1983. “Gravitational Field Energy Research in Japan” с. 68-71 ] В состав устройства входит катушка, выполненная в виде двойного соленоида, содержащая 1000 витков, 3 конденсора, диск из специального сплава и ферритовый блок. Возле двойного соленоида установлена катушка генератора, состоящая из 40 витков провода. На генератор подается 3-х фазное напряжение, чтобы получилось вращающееся электромагнитное поле. Наблюдается постоянное увеличение потенциала на выходе, которое автор конвертера, японский ученый Шиничи Сеик, объясняет постепенным, непрерывным поглощением энергии гравитационного поля. Начальный потенциал – 3В постепенно увеличивается, достигая 40В за 3 месяца. По мнению ученого, этот результат показывает постепенный приток энергии. При этом наблюдается постоянное уменьшение частоты. За трое суток частота уменьшается от 100 кГц до 1.5 кГц. [ Ещё по теме: 1) Виленкин, «Времятрон», Sur la piste de l`energie libre http://quanthomme.free.fr 2) http://vesti.ru/2001/07/26/996163684.html http://www.grus.ru 3) http://www.skif.biz/index.php?name=Pages&op=page&pid=4 4) http://jre.cplire.ru/jre/mar00/4/text.html ]

Электрический ток – это вихрь/кручение (torsion) в окружающем пространстве; вихрь имеет винтовую структуру с очень малым шагом (10 -12 ) м; наличие разности потенциалов на проводе возбуждает вихревой поток (вихрь) который распространяясь вокруг провода (над проводом) «тащит» в проводе на себя – эфир; движущийся эфир – в свою очередь – увлекает в движение носители электрического тока (электроны, ионы и т. д.); [

В тему: Базиев Д. Х. «Электричество Земли», М., Коммерческие технологии, 1997г., с. 43.]

Суть реактивного тока в следующем: по разным причинам вихрь активного тока, получает поступательное движение в направлении тупикового конца проводника. Дойдя до тупика, вихрь, потеряв шаг, через некоторое время dt, начинает движение в обратном направлении. При этом изменяется направление вращения вихря на обратное. Таким образом, направление вращения реактивного и активного вихрей – различное, реактивный вихрь располагается над активным, т. е. его радиус больше и движется он навстречу активному. О реактивном токе имеет смысл говорить – только при наличии активного. Ясно, что магнитное поле создаваемое активным током – отчасти гасится реактивным. Электросчётчики реактивной энергии используют этот эффект.

Для проверки того факта, что движущийся эфир является первопричиной движения носителей электрического тока (электронов) в проводе – может быть использован представленный ниже автогенератор («генератор 60»). Здесь мы убедимся, что движение (или колебание) эфира первично, а движение носителей электрического тока (электронов) – вторично.
Уже известен похожий опыт. [В. А. Ацюковский, «12 экспериментов по эфиродинамике», г. Жуковский, изд-во «Петит», 2003г. стр. 21. Внизу, всё что в «клеточку» – цитата из этой работы: ]

Эксперимент № 6. Сжимаемость тока.

Постановка задачи.
Как известно, плотность тока g в среде, имеющей проводимость s , диэлектрическую проницаемость e и магнитную проницаемость m определяется электрической напряженностью Е как g =( s + e ¶ / ¶ t) E (6.1)
Поскольку электрическая напряженность и плотность тока в конкретной среде связаны простым коэффициентом пропорциональности, а, как показано в предыдущем разделе (стр. 18 «компенсация электрического поля в среде»), распространение электрической напряженности может происходить в продольном направлении, то и распространение плотности тока может иметь волновой характер. Однако волновой характер любого возмущения может происходить тогда, когда материальный носитель этого возмущения способен сжиматься, образуя тем самым градиент плотности, который в данном месте и является причиной дальнейшего продвижения процесса.
Постановка эксперимента.
Для проверки факта сжатия электрического тока может быть использована коммутируемая цепь. Поскольку в разрыве цепи на контактах образуется разность потенциалов, то после замыкания контакта оказывается, что эта разность потенциалов подключена к участку цепи с нулевым сопротивлением, что должно вызвать всплеск тока на этом нулевом сопротивлении. Этот всплеск затем будет расходиться вдоль цепи.
Схема эксперимента приведена на рис. 6.1а.
Электрическая цепь представляет собой два отрезка провода по несколько метров длинной подключенных каждый одним концом к электрической батарее, а вторым концом к периодически замыкаемому и размыкаемому контакту. От проводов отходят отводы, припаянные к проводу основной цепи на расстоянии одного метра друг от друга. При замыкании контакта в цепи возникают импульсы, которые могут фиксироваться осциллографом. Устанавливается факт того, что при замыкании контакта на каждой паре отводов возникают короткие импульсы, при этом на отводах, удалённых от контакта, амплитуда импульсов уменьшена, а длительность увеличена. Это и означает рассасывание тока вдоль проводника, что может быть охарактеризовано как сверхпереходный режим коммутации.

Читайте также:
Водяной насос без питания своими руками

Предварительные эксперименты подтвердили высказанные предположения (рис. 6.1б).
Выводы.
Эксперимент подтверждает факт сжимаемости тока, а также необходимость и в этой части уточнения уравнений электродинамики.

Идея генератора.

Идея – работать исключительно – с эфирными токами.
Для этого, используется катушка с намоткой типа «бифиляр». Это делает невозможной генерацию за счёт электронной схемы. При однонаправленном пропускании импульса электрического тока по виткам обмоток L1 и L2 (рис. 60-1а) – содержащийся в проводах эфир перераспределяется приводя к образованию градиента давления по его длине. Наличие градиента давления в проводах приводит к вытеканию (затеканию) эфира в окружающее (из окружающего) пространство. Процесс рассасывания, вытекания (/затекания) сопровождается характерным шумом который похож на детерминированный хаос. (Дополнительным источником шума могут быть также тепловые колебания накладывающиеся на движущийся эфир. В электронике используется термин – тепловой шум.) Пока существует детерминированный хаос – транзисторы закрыты. После того как хаос прекращается, транзисторы открываются создавая одиночный импульс тока – и цикл повторяется.
Электрические токи в проводах катушек L1, L2 – всегда встречные. Это следует из факта наличия сплошного спектра, так как в противном случае – никакого сплошного спектра не было бы, а были бы колебания на частоте резонанса данной катушки. Поэтому ток рассасывания в одной из катушек (L1 или L2) является реактивным для другой. Это обстоятельство дало основание назвать устройство бифилярным генератором реактивного тока.
Концептуально – схемы представленные на рис. 6.1 и рис. 60-1а одинаковы. В обеих вариантах, в результате импульса, эфир перераспределяется приводя к образованию градиента давления по его длине. Эфирный ток рассасывается продольно по разным проводникам. На рис. 6.1 – две катушки содержащие по 1/2 витка, на рис. 60-1а – многовитковые катушки.

Принципиальная схема генератора представлена на рис. 60-1а. Катушка «бифиляр» (L1, L2, рис. 60-1а): в два провода, 140 витков, индуктивность 100 мкГн, сопротивление 4.5 ом. (Начала выводов помечены точками.) Катушка связи L3: диаметр 4 мм, длинна намотки 100 мм, число витков 500, индуктивность 45 мкГн, сопротивление 2.45 ом. К катушке L3 подключался осциллограф, эпюры – на рис. 60-1б, 60-2в, 60-3.
Индикатором существования нового эффекта – эффекта реактивного магнитного поля – является катушка связи L3. Период T1 (T1=0.22 мкс) соответствует частоте 4.54 МГц и является резонансом измерительной катушки L3. Период T2 (T2=2.5 мкс) тождественен времени рассасывания тока вдоль проводника для эксперимента № 6 (рис. 6.1). Здесь нас интересует всё, что происходит в течение этого периода (T2), в частности – введение ферритового стержня в катушку (L1, L2) – удлиняет его, а период T1 при этом остаётся неизменным. Подробнее об эффекте здесь.

Этот вариант рассчитан на питание от стабильного источника с напряжением 5 вольт (рис. 60-2). Катушки L1, L2 намотаны алюминиевым проводом. Из полученных данных следует, что для алюминиевого провода, так же как и для меди существует сплошной спектр. Измеренное напряжение в импульсе – на выводах катушки L1 (или L2) составляет 37. 40 вольт. Измеренное напряжение в импульсе – на выводах начал (или концов) катушек (L1, L2, т. е. меж катушечное) составляет 1 . 1.2 вольта, а в идеале оно должно бы быть здесь – равным нулю. Что же касается токов, то здесь, в бифилярной катушке, они не могут идти в одном направлении поэтому постепенное (экспонентное) снижение уровня происходит в виде малых колебаний (качаний) в взаимно противоположных направлениях.
Введение ферритового стержня в катушку (L1, L2) не приводит к изменению периода T1, т. е. частота резонанса катушки L3 (4.54 МГц) – стабильна. Происходит увеличение числа колебаний в затухающем ряде и как следствие – ступенеобразное (ступенчатое) увеличение периода T2.

В варианте №3 использовалась та же схема (рис. 60-2а), только заменена катушка на применяемую в варианте №1.
Частота резонанса для катушки L3 осталась прежней – это 4.54 МГц.

Схему можно собрать так, как показано на рис. 60-4. Причём, если поменять местами (попутать) выводы катушек – соединив точку а с точкой b’ , точку b с точкой a’ – то схема не теряет работоспособности. Более того, если в точках c, c’ сделав разрывы – поменять местами базовые выводы транзисторов – то схема и в этом случае продолжает работать.

Читайте также:
Рабочая схема установки Донольда Смита (Donald L. Smith Device)

Токопроводящее вещество, в частности провод – заполнено эфиром. Этот эфир удерживается проводом, не смешивается с эфиром содержащимся в окружающим пространстве. Его давление в проводе может быть существенно выше (в импульсе) по сравнению с окружающим пространством.
Избыточное (повышенное) давление эфира, приводит к его вытеканию из провода, провод «газит».
Короткий импульс напряжения перераспределяет эфир в проводах – приводя к образованию градиента давления по его длине. По завершении импульса – начинается процесс рассасывания тока. Так как для бифилярной катушки – эфирные токи в каждом проводе идут в среднем – в одном направлении, то и электроны в среднем – движутся в том же направлении. Этот тип тока (рассасывание тока) отличается тем что нет соответствующего ему напряжения на противоположном конце катушки. Возбуждаемое им переменное магнитное поле имеет широкий спектр. Поэтому для таких колебаний – спектр детерминирован электрическими свойствами провода. В частности, увеличение индуктивности катушки приводит к замедлению (удлинению) эффекта рассасывания тока. После того как давление эфира в проводе становится ниже определённого уровня – рассасывание тока прекращается и это приводит к прекращению колебаний носителей заряда.
Теперь мы убедились, что движущийся в проводе эфир – является первопричиной движения носителей электрического тока (электронов, ионов и т. д.). В частности, направление движения электронов совпадает с направлением движения эфира в проводе.

Как работает бифилярная катушка Теслы

Интересная особенность простых и бифилярных катушек.

Способов намотки катушек, одного из основных элементов электротехнических и радиотехнических устройств, существует множество. Кто как хочет, так и наматывает, преследуя определенные цели. В данной статье мы проведем анализ некоторых свойств простых и бифилярных катушек. Упрощённо способ намотки этих катушек показан на рис.1.

Рис.1 Бифилярная и простая катушка

Обычная намотка, при которой витки проводника равномерно наматываться на круглый (или иной формы) каркас либо по часовой, либо против часовой стрелке применялась давно, например, в первых селеноидах или электромагнитах. Основная цель, которую преследовали создатели таких катушек – получить устройство, с помощью которых можно получить магнитное поле, аналогичное тому, что образует постоянный магнит. А если внутри такой катушки разместить сердечник из мягкого железа. То есть, можно получить электромагнит с такими показателями, которые получить от постоянных магнитов невозможно.

Бифилярную намотку начали использовать широко только в последнее время. Причем особого порядка здесь не просматривается. И в основном считается, что бифилярная намотка используется тогда, когда по каким-то причинам надо создать катушку с минимальной или нулевой индуктивностью. Свою версию бифилярной плоской катушки использовал Тесла в качестве вторичной катушки своего трансформатора.

Но я хотел бы обратить внимание читателей на такие факты, которые нигде еще никто не рассматривал. И, естественно, на те следствия, которые получаются из этого. Рассмотрим сечение части витков обычной катушки (рис.2). В соответствии с законом Ампера магнитные поля витков с током, который на рис.2. течет от читателя, между витками направлены навстречу друг другу. Это приводит к тому, что с позиций классической электродинамики, напряженность магнитного поля между витками снижается, а с позиций эфирной теории между витками формируется область с пониженным эфирным давлением. И с любых позиций между витками простой катушки появляются силы, которые будут сжимать катушку вдоль её оси. И если катушка при этом будет сделана из упругого металла, то при пропускании тока по катушке её длинна будет уменьшаться, а при выключении тока пружина будет стремиться возвратиться к первоначальному состоянию. При совпадении частоты подаваемого тока с частотой колебаний такой упругой пружины-катушки можно ввести систему в резонанс. Но это уже следствие и только один из вариантов применения этого эффекта. А пока запомним, что между витками простой катушки при протекании тока в любом направлении тока между витками катушки формируются области с пониженным давлением эфира.

Рис.2 Разрез витков простой катушки с силовыми линиями магнитного поля.

Теперь посмотрим на сечение части витков бифилярной катушки (рис.3). Обратим внимание на то, что теперь направление тока между соседними витками противоположно. А это по закону Ампера приводит к тому, что с позиций классической электродинамики между витками формируются области с повышенной напряжённостью магнитного поля, а с позиций эфирной теории имеет место создание областей с повышенным эфирным давлением. Подавая импульсы тока на бифилярную катушку можно получить своеобразный генератор ударных эфирных волн, если правильно подобрать форму высоковольтных импульсов с крутыми передними и задними фронтами.

Рис.2 Разрез витков бифилярной катушки с силовыми линиями магнитного поля.

Какие следствия мы можем получить из этого простого, давно известного, но практически не исследованного, эффекта? В известном трансформаторе Николы Тесла первичная катушка как раз и используется для генерации ударных эфирных волн. И думаю, что именно рассматриваемый эффект и позволяет создавать ударные эфирные волны. Так как первичная обмотка в трансформаторе Тесла состоит из трех витков, то за счет интерференции вне катушки поле практически равно нулю, а внутри катушки создается сложная картина из областей повышенного и пониженного эфирного давления – солитон, форма которого зависит от многих параметров – диаметра первичной катушки, числа витков в нёй, диаметра провода, формы подаваемых импульсов, их частоты, скважности и максимального напряжения.

Если бифилярные катушки намотать на концах ротора в форме свастики, то соединив их параллельно и подавая на них ток любой направленности и формы – синус, импульсы и т.д., можно между витками катушки получить пульсирующее повышенное давление эфира. И, значит, при определенных параметрах катушек и подаваемого тока можно заставить свастику вращаться вокруг оси, проходящей через центр свастики. Можно поступить проще, если катушку сделать в варианте магнитного хранителя, используя в качестве проводника мягкое железо. Тогда после «зарядки» магнитного хранителя между его витками будут иметь место области с повышенным давлением эфира. И тогда без дополнительной «подзарядки» такая свастика будет вращаться практически вечно.

Читайте также:
Садовый насос без электричества и механики

Можно на общий каркас намотать две катушки, одну бифилярную, а вторую обычную. Если их соединить последовательно, то в области бифилярной катушки один и тот же ток будет создавать между витками области с повышенным давлением эфира, а между витками обычной катушки давление эфира будет пониженным относительно среднего давления эфира. В итоге в такой конструкции появится сила, направленная от бифилярной катушки к катушке обычной, что заставит всю конструкцию перемещаться в пространстве. Вот вам и безопорное движение.

Такая конструкция из бифилярной и обычной катушки может быть положена в основу детской игрушки. Например, можно на коромысле разместить две ракеты, внутри которых будут размещены бифилярная и простая катушка. Для питания таких игрушек можно использовать самые обычные батарейки. Но сам факт вращения таких ракет заставит детей задуматься о природе безопорного вращения, на такой простой игрушке вырастет поколение, свободное от догм, которые пока еще блокируют сознание взрослых. Всем новаторам, которые хотят, чтобы их идеи и изобретения получили широкое распространение наперекор противодействию разного рода академиков и чиновников, можно предложить реализовывать изобретения в виде детских игрушек. Правда при этом придется забыть о гонорарах и прибылях, но дети, повзрослев, сумеют превратить свои игрушки в устройства, с помощью которых они смогут реализовать мечту и планы изобретателя. Причем ждать реализации придется уже не 50 и более лет, а гораздо меньше. Дети растут быстро.

Как работает бифилярная катушка Теслы

СЕКРЕТ 1.2

Генератор с искровым возбуждением (“SEG”) ( Подача зарядов в LC контур )

Возможная реализация SEG

(С русского форума)

SEG БЕЗ СИНХРОНИЗАЦИИ

От Дона Смита

Поочерёдный заряд обкладок конденсатора

вилка Авраменко устройство свободной энергии (. )

Простейшее устройство свободной энергии (. )

Асимметричный конденсатор

( усиление тока . )

Поле от внешней обкладки Поле от внутренней обкладки

Ёмкостной триод

( третий электрод в несимметричном конденсаторе )


ПРИНЦИП УСИЛЕНИЯ ТОКА В КОНДЕНСАТОРЕ – ТРИОДЕ


Комментарий о SEG:

Все схемы с противо ЭДС могут быть использованы в SEG

Для большей асимметрии SEG?

Возбуждение SEG одной искрой ?

По Дону Смиту

(нарушение симметрии искрой)

Современные версии SEG

Вернёмся к подавлению противо ЭДС в резонансной катушке

Версия 3

По Дону Смиту

Версия по Дону Смиту

Много катушечная схема для размножения энергии

Версия по Тариэлу Капанадзе

Нет описания, читай дальше.

ПРОЦЕСС КАПАНАДЗЕ

Процесс Капанадзе требует всего 4 шага :

Шаг 1

Шаг 2

ШАГ 3

ШАГ 4

Наконец, колебания сглаживаются путем фильтрации, и получается выходная энергия с частотой электросети.

Современный вариант

Снижения частоты LC- колебаний до частоты электросети

( модуляция )

Вариант Дона Смита ( предположение Патрика Келли )

ИЛЛЮСТРАЦИИ К ПОНИЖЕНИЮ ЧАСТОТЫ

Выигрыш в энергии

( Замечания на секреты 1,1 и 1,2)

Это “приманка” для привлечения зарядов из окружающего пространства.

Секрет 2

Переключаемая индуктивность

Индуктивность состоит из двух катушек, которые могут быть расположены близко друг к другу. Их включение показано на рисунке.

Примеры катушек реально изготовленных катушек


      — (b)

Точность перезарядки (а) была улучшена до 10 процентов. Для сравнения были проведены измерения (б) без шунтирования. По существу результат был аналогичен измерению (а), в котором использовался шунтирующий диод. Недостающие 10% напряжения могут быть объяснены как потери из-за распределённой ёмкости, и сопротивления катушки. Продолжение испытаний Полярность шунтирующего диода была изменена, и испытания повторились: (теперь катушка шунтируется в первоначальный момент)





Результат: : контур не расстраивается, частота не изменяется, но он сильно шунтируется



ИЛЛЮСТРАЦИЯ ДЛЯ ПЕРЕКЛЮЧАЕМОЙ ИНДУКТИВНОСТИ



ПОДКЛЮЧЕНИЕ ДОПОЛНИТЕЛЬНОЙ МАССЫ К МЕХАНИЧЕСКОМУ ГЕНЕРАТОРУ

Опыты с индукционной плитой и катушкой тесла

Катушка Тесла и теории эфира

В 1896 году ученый получил патент на свое изобретение – резонансный трансформатор. Он образует высокочастнотное повышенное напряжение, то есть ток высокого потенциала.

История создания начинается с опытов Тесла по доказательству существования эфира. Эфир представляет собой физическую среду, некое поле или вещество, заполняющее просторы Вселенной. Именно он, согласно идеям Тесла, отвечал за распространение гравитационного и элетромагнитного взаимодействия. До появления теории относительности концепция эфира была распространена в физике, а после этого перестала разрабатываться.

Ученый хотел использовать эфир как источник энергии, что позволило бы отказаться от проводов для передачи и распространять электричество по всему миру. Он хотел установить две гигантские катушки на северном и южном полюсах Земли. Глубоко после смерти Тесла это направление не разрабатывалось, его считали слишком уж странным ученым, а идеи – провокационными. Но, скорее всего, причина была в нежелании физика учитывать экономическую сторону при разработке идей, не рекламировал выгоду для корпораций от их реализации.

Архивы физика были частично утеряны после его смерти, а наступление эры вакуумных изобретений похоронило мысль о двух катушках на полюсах. Неизвестно, удалось ли ему получить или же доказать возможность создания бесконечного источника энергии.

Бифилярная катушка что это

Бифилярная катушка – это такая электромагнитная катушка, у которой есть в наличии две параллельных, близко расположенных обмотки. Также могут использоваться и три провода, изолированных друг от друга – такое устройство будет носить название «трифилярная катушка».

В электротехнике словом «бифиляр» описывают проводник или же провод, который изготовлен из нескольких (в частности, двух – от слова «би») жил, изолированных друг от друга. Этот термин часто используется для обозначения специальных типов проводов для обмоток трансформатора. Бифилярный провод в основном представляет собой два цветных соединенных вместе эмалированных и изолированных провода.

Читайте также:
Свободная энергия. Новый Дядя Вася

Бифилярная катушка- это устройство, которое нужно и можно классифицировать по способу применения. Всего существует четыре основных типа такого приспособления:

  1. Катушка с последовательным соединением и параллельной намоткой.
  2. Параллельные соединение и намотка.
  3. Катушка намотана встречно, а соединение последовательное.
  4. Обмотка катушки выполнена как и в предыдущем пункте (встречно), но соединение уже параллельное.

Бифилярная катушка обычно намотана так, что в обоих ее составляющих ток будет протекать по одному и тому же направлению. Создаваемое первой обмоткой магнитное поле будет складываться с полем, создаваемым другой катушкой. Этот эффект приводит к наложению полей и созданию общего большого магнитного потока.

Есть случаи, когда бифилярная катушка собирается чуть-чуть иначе. Например, когда витки обмоток расположены таким образом, чтобы электрический ток протекал в противоположных направлениях. Это так называемые катушки с нулевым коэффициентом самоиндукции (потому что магнитное поле, создаваемое одной обмоткой, будет по направлению противоположно полю, создаваемому второй обмоткой, однако будет равно ему по значению, что в случае наложения полей в сумме дает ноль).

Такие приспособления часто используют в современной электронной технике как один из способов создания резистора проволочного с маленькой индуктивностью.

Еще один тип таких устройств, как бифилярные катушки, можно увидеть в обмотках реле или трансформаторов. Их используют также в импульсных источниках электрического питания благодаря их способности подавлять обратную электродвижущую силу (ЭДС). Намотка катушек индуктивности в таком случае выполнена следующим образом. Две обмотки расположены очень близко друг к другу и намотаны параллельно друг другу, но эффективно изолированы. Основная обмотка будет управлять реле, а вот вспомогательная обмотка коротко замкнута внутри корпуса. Ток через первую обмотку прерывается (когда отключается реле), идет поглощение части магнитной энергии вспомогательной обмоткой. Такие бифилярные катушки, кроме того, вырабатывают тепло для повышения внутреннего сопротивления.

При применении такой катушки в импульсных трансформаторах одна обмотка используется в качестве рассеивателя энергии. Из-за близости намоток оба проводника улавливают один магнитный поток и компенсируют его.

Для чего нужна катушка Тесла сегодня?

Трансформатор может использоваться для создания зрелищных молний длиной много метров, что обусловливает его популярность как оборудования для зрелищ. Применяют его и для управления без проводов, беспроводной передачи энергии, а когда-то широко использовали, как тонизирующие и общеукрепляющее медицинское средство. Катушка Тесла поджигала газовые лампы, помогала искать места утечки в вакуумной системе. Существуют приборы, способные играть музыку.

Принцип действия устройства использован при создании энергосберегающих люминесцентных ламп.

Из чего состоит катушка Тесла

Что такое катушка тесла? Это две обмотки с различным числом витков, но без общего сердечника. Она повышает напряжение на выходе в десятки, а то и сотни раз.

Катушка Тесла состоит из:

  1. Источника питания.
  2. Конденсатора.
  3. Трансформатора.
  4. Тороида.
  5. Первичной и вторичной обмотки.
  6. Заземления.
  7. Разрядника.

Рассмотрим основные элементы:

  • Тороид. Катушка Тесла сделана в форме Тора или тороидальной фигуры. Это понятие нам известно из геометрии, где тором называется фигура, которая получается при вращении вокруг оси образующей окружности. Намного нагляднее этого определения обычный бублик или пончик, являющиеся тороидными фигурами. Для катушки тороид делается из алюминиевой гофры и выполняет функцию аккумулирования энергии. Он так же понижает резонансную частоту, формирует электростатическое поле, отталкивающее стримеры от вторичной обмотки.
  • Вторая основная составляющая – это вторичная обмотка из 800-1200 витков на трубе ПВХ. Количество витков определяет диаметр провода. Соотношение длины к диаметру составляет четыре или пять к одному. Покрытие сверху лаком убережет обмотку от расползания.
  • Первичная обмотка имеет низкое сопротивление по причине того, что по ней проходит мощный поток тока. Изготавливается она из провода с сечением более 6 мм. Форма бывает разной: конической, цилиндрической или плоской.
  • Защитное кольцо является витком плоской формы из заземленного медного провода. Оно необходимо, чтобы стример не повредил прибор, попав из тороида в первичную обмотку.
  • Заземление используется, чтобы замкнуть ток, иначе стримеры ударят в само устройство.

Самостоятельное изготовление катушки Тесла по схеме

При монтаже трансформатора Тесла схема реализуется следующим образом:

  • Берем ПВХ-трубу, и отрезаем кусок длиной 300 миллиметров.
  • Наматываем на трубку медную проволоку. Если она не имеет эмалированного покрытия, после окончания работы обмотку покрывают лаком. Витки плотно прижаты друг к ругу, а концы продеты сквозь отверстия в трубе и выведены на 20 мм. каждый. Контакты делают сверху.
  • Основанием послужит конструкция из ДСП. Диэлектрическая платформа должна быть устойчивой. Поэтому лучше сделать ее шире, чем диаметр элементов, размещаемых на опоре.
  • Первичная обмотка – это обычно три с половиной витка. Материал – медная трубка. Важно прочно закрепить деталь на опоре. Используя трубку малого диаметра можно делать больше витков. Диаметр контура должен быть больше, чем у первичной катушки приблизительно на 30 мм.
  • Тороиды бывают разные. Одни используют всю тот же медный профиль круглого сечения. Другие мастера берут алюминиевую гофру. В последнем случае для крепления используют железную перекладину, монтируемую в местах вывода контактов вторичного контура.
  • Один конец первичной цепи заземляют. Если такой возможности нет, устанавливают защитное кольцо из материала, не проводящего электричество. Можно использовать фрагмент пластиковой трубы.

На завершающем этапе транзистор соединяют согласно схеме. Конструкция оснащается радиатором или кулером. Теперь можно подключать элемент питания. Обычно используют обычную крону.

Подбор материалов и деталей

Чтобы работа катушки Николя Тесла была эффективной, необходимо побеспокоиться о качестве примененных материалов. Проволока и медная трубка должны быть цельными. Счаливание, пайка приведут к тому, что устройство будет работать некорректно. Наличие эмалированного покрытия на проводе крайне желательно. Если он используется вторично, скорее всего оно повреждено. Заранее приобретите лак, который нанесите на вторичную обмотку. Основание может быть изготовлено не только из ДСП, а штатив не только из ПВХ. Главное, чтобы они не проводили электричество.

Читайте также:
Солнечный коллектор (фото, расчет, пошагово)

Если говорить конкретней, то выбор материалов и узлов предполагает следующие условия:

  • Источник питания должен выдавать от 12 до 19 Вольт. Подходит автомобильный или мотоциклетный аккумулятор. Можно использовать зарядку от ноутбука. Также пользуются понижающим трансформатором, если он оснащен диодным мостом для преобразования переменного тока в постоянный.
  • Площадь сечения проволоки, используемой для сборки вторичной катушки, – от 0,1 до 0,3 квадратных миллиметров. Количество оборотов от 700 до тысячи.
  • Терминал – это дополнительная емкость на вторичном контуре. Если стримеры отсутствуют, необходимости в нем не возникает. Тогда выводят конец контура на 0,5-5,0 см. вверх.

Вместо лака можно использовать краску. Желательно, чтобы лакокрасочное покрытие было жаростойким. Помните, что устройство склонно к перегреванию. Оголенные провода – причина появления неконтролируемых зарядов, способных убить человека, а приборы, находящиеся в комнате, и подключенные к электросети, попросту сгорят.

Сборка катушки Николя Тесла по инструкции

Важно придерживаться инструкции по сборке катушки Тесла.

Сразу изготовьте все необходимое. Намотайте проволоку на трубу, покройте лаком, дайте просохнуть. Изготовьте первичную обмотку, диэлектрическое основание, защитное кольцо. Затем приступайте к монтажу. Установите первичную катушку на основу. Наденьте и закрепите первичный контур. Смонтируйте остальные элементы. Подсоединять источник питания лучше через выключатель. Причем делается это в последнюю очередь, когда катушка Теска полностью собрана. Пользуйтесь принципиальной схемой.

Конфигурации трансформатора

За годы, прошедшие после изобретения трансформатора, появилось множество его конфигураций.

  • SGTC – катушка имеет классическое устройство и работает на искровом разряде. Позволяет получить длинный стример без добавочных эффектов. Элементом коммутации выступает разрядник, выполненный из двух кусков толстого проводника. Когда речь идет про мощные устройства, то применяют вращающиеся разрядники и электродвигатели.
  • VTTC – катушка Тесла, созданная на базе электронной лампы, выступающей коммутирующим элементов. Может работать в постоянном режиме, выдавая длинные, толстые разряды. Стример имеет форму факела.
  • SSTC – ключом является полупроводниковый элемент – мощный транзистор. Может работать без перерывов, порождая стимеры любой формы и играя музыку.
  • DRSSTC – имеет два контура резонанса. Ключами являются полупроводниковые компоненты. Очень сложен в управлении, но дает поистине впечатляющие эффекты.

Генератор свободной энергии — «Назад в будущее»

В середине семидесятых в журнале «Наука и жизнь» промелькнула интересная статья, где один изобретатель, изучающий передачу электрической энергии без проводов, изобрёл генератор электрической энергии из двух проволок. Проволоки эти были необычными. Каждая проволока начиналась медью, а заканчивалась алюминием. Длина проволок, судя по фотографии, была примерно 70 см. Изобретатель пальцами руки держал лампочку накаливания 2,5 вольта, которая ярко светилась. Проволоки висели в воздухе и никуда не были подсоединены!

На алюминиевую фольгу положите салфетку, сверху медную спираль, смочите салфетку водой и подсоедините тестер. Показания тестера будут выше 0,5 вольта. Тестер показывает больше, чем разность потенциалов металлов, иногда показания превышают 1 вольт.

Наше объяснение этого эффекта:

Происходит стекание зарядов от минуса (алюминий) к плюсу (медь), при этом свободные нейтроны в воде приобретают минусовой потенциал и количество электронов увеличивается — это объясняет увеличение напряжения.

После многочисленных экспериментов с ионным ветром, электризации жидкостей, разностью потенциалов металлов мы создали генератор свободной энергии, взяв за основу плоскую бифилярную катушку Тесла.

Генератору свободной энергии дали название «НАЗАД в БУДУЩЕЕ»!

Генератор свободной энергии вы можете сделать своими руками и провести массу интересных экспериментов, а также вы можете стать соавтором нашего изобретения и получать дальнейшие разработки генератора «Назад в будущее» по требованию на E-mail: [email protected]

Чем уникальна катушка Тесла

Физик, применив устройство, при входной частоте в пару сотен килогерц способен получить напряжение размеров в 15 миллионов вольт и более. Собрать его можно даже дома, ведь все необходимые элементы доступны для покупки любому, достаточно посетить строительный гипермаркет и магазин электроники.

Получить можно следующие эффекты как вместе, так и по отдельности:

Катушка Тесла: что это, для чего она нужна

Катушка Тесла и теории эфира

В 1896 году ученый получил патент на свое изобретение – резонансный трансформатор. Он образует высокочастнотное повышенное напряжение, то есть ток высокого потенциала.

История создания начинается с опытов Тесла по доказательству существования эфира. Эфир представляет собой физическую среду, некое поле или вещество, заполняющее просторы Вселенной. Именно он, согласно идеям Тесла, отвечал за распространение гравитационного и элетромагнитного взаимодействия. До появления теории относительности концепция эфира была распространена в физике, а после этого перестала разрабатываться.

Ученый хотел использовать эфир как источник энергии, что позволило бы отказаться от проводов для передачи и распространять электричество по всему миру. Он хотел установить две гигантские катушки на северном и южном полюсах Земли. Глубоко после смерти Тесла это направление не разрабатывалось, его считали слишком уж странным ученым, а идеи – провокационными. Но, скорее всего, причина была в нежелании физика учитывать экономическую сторону при разработке идей, не рекламировал выгоду для корпораций от их реализации.

Архивы физика были частично утеряны после его смерти, а наступление эры вакуумных изобретений похоронило мысль о двух катушках на полюсах. Неизвестно, удалось ли ему получить или же доказать возможность создания бесконечного источника энергии.

Принцип работы катушки Тесла

Большинство ошибок, допускаемых любителями при сборке, связано с непониманием принципа работы устройства. Стараясь имитировать, считая прибор простым трансформатором, они забывают о необходимости ясно представлять, как на самом деле она должна действовать КТ. Предусмотрено две обмотки. Одна именуется первичной, другая вторичной. К первой (разрядник) подводятся провода, идущие к внешнему источнику питания. Вокруг создается электромагнитное поле. Когда колебательный контур наберет достаточно мощности, заряд по воздуху передается на вторую обмотку.

Читайте также:
Электросамокат своими руками

Частично переданная энергия преобразуется в напряжение. Причем есть закономерная взаимосвязь между этой величиной и временем, за которое образуется колебательный контур. Показатели прямо пропорциональны. Наличие двух колебательных контуров и является принципиальным отличием катушки Тесла от простого трансформатора. Причем результат работы первой заключается в появлении видимых стримеров – разрядов молнии искусственного происхождения. В результате происходит ионизация водорода, содержащегося в воздухе, как и во время сильной грозы.

Для чего нужна катушка Тесла сегодня?

Трансформатор может использоваться для создания зрелищных молний длиной много метров, что обусловливает его популярность как оборудования для зрелищ. Применяют его и для управления без проводов, беспроводной передачи энергии, а когда-то широко использовали, как тонизирующие и общеукрепляющее медицинское средство. Катушка Тесла поджигала газовые лампы, помогала искать места утечки в вакуумной системе. Существуют приборы, способные играть музыку.

Принцип действия устройства использован при создании энергосберегающих люминесцентных ламп.

Устройство бифиляра

Бифилярная катушка Тесла изготовлена в виде плоской спирали или соленоида. Бифиляр, в отличии от обычной катушки, имеет 4 выхода. Так как катушка наматывается двумя проводами, то получаются 2 выхода в середине катушки и 2 с краю. В отличии от обычной катушки, имеющий всего 2 выхода — один изнутри, а другой снаружи.

Намотка может быть последовательной и параллельной. Соединение проводов в катушке также возможно как последовательное, так и параллельное. Отсюда возникает 4 возможные варианта использования катушек:

  • Намотка проводов последовательная
  • Намотка проводов параллельная
  • Намотка последовательная
  • Намотка параллельная

В бифиляре Теслы соединение производится с началом нечетных витков с концом чётных. Это позволяет сильно увеличить добротность и плотность намотки. Такое устройство бифиляра Тесла определяет его уникальные свойства.

Иногда это устройство путают с трансформатором Тесла, Но трансформатор Тесла, который ещё называют катушкой Тесла, не изготавливается методом бифиляра. Подробнее о нём можно прочитать в этой статье.

Из чего состоит катушка Тесла

Что такое катушка тесла? Это две обмотки с различным числом витков, но без общего сердечника. Она повышает напряжение на выходе в десятки, а то и сотни раз.

Катушка Тесла состоит из:

  1. Источника питания.
  2. Конденсатора.
  3. Трансформатора.
  4. Тороида.
  5. Первичной и вторичной обмотки.
  6. Заземления.
  7. Разрядника.

Рассмотрим основные элементы:

  • Тороид. Катушка Тесла сделана в форме Тора или тороидальной фигуры. Это понятие нам известно из геометрии, где тором называется фигура, которая получается при вращении вокруг оси образующей окружности. Намного нагляднее этого определения обычный бублик или пончик, являющиеся тороидными фигурами. Для катушки тороид делается из алюминиевой гофры и выполняет функцию аккумулирования энергии. Он так же понижает резонансную частоту, формирует электростатическое поле, отталкивающее стримеры от вторичной обмотки.
  • Вторая основная составляющая – это вторичная обмотка из 800-1200 витков на трубе ПВХ. Количество витков определяет диаметр провода. Соотношение длины к диаметру составляет четыре или пять к одному. Покрытие сверху лаком убережет обмотку от расползания.
  • Первичная обмотка имеет низкое сопротивление по причине того, что по ней проходит мощный поток тока. Изготавливается она из провода с сечением более 6 мм. Форма бывает разной: конической, цилиндрической или плоской.
  • Защитное кольцо является витком плоской формы из заземленного медного провода. Оно необходимо, чтобы стример не повредил прибор, попав из тороида в первичную обмотку.
  • Заземление используется, чтобы замкнуть ток, иначе стримеры ударят в само устройство.

Устройство бифиляра

Бифилярная катушка Тесла изготовлена в виде плоской спирали или соленоида. Бифиляр, в отличии от обычной катушки, имеет 4 выхода. Так как катушка наматывается двумя проводами, то получаются 2 выхода в середине катушки и 2 с краю. В отличии от обычной катушки, имеющий всего 2 выхода — один изнутри, а другой снаружи.

Намотка может быть последовательной и параллельной. Соединение проводов в катушке также возможно как последовательное, так и параллельное. Отсюда возникает 4 возможные варианта использования катушек:

  • Намотка проводов последовательная
  • Намотка проводов параллельная
  • Намотка последовательная
  • Намотка параллельная

В бифиляре Теслы соединение производится с началом нечетных витков с концом чётных. Это позволяет сильно увеличить добротность и плотность намотки. Такое устройство бифиляра Тесла определяет его уникальные свойства.

Иногда это устройство путают с трансформатором Тесла, Но трансформатор Тесла, который ещё называют катушкой Тесла, не изготавливается методом бифиляра. Подробнее о нём можно прочитать в этой статье.

Конфигурации трансформатора

За годы, прошедшие после изобретения трансформатора, появилось множество его конфигураций.

  • SGTC – катушка имеет классическое устройство и работает на искровом разряде. Позволяет получить длинный стример без добавочных эффектов. Элементом коммутации выступает разрядник, выполненный из двух кусков толстого проводника. Когда речь идет про мощные устройства, то применяют вращающиеся разрядники и электродвигатели.
  • VTTC – катушка Тесла, созданная на базе электронной лампы, выступающей коммутирующим элементов. Может работать в постоянном режиме, выдавая длинные, толстые разряды. Стример имеет форму факела.
  • SSTC – ключом является полупроводниковый элемент – мощный транзистор. Может работать без перерывов, порождая стимеры любой формы и играя музыку.
  • DRSSTC – имеет два контура резонанса. Ключами являются полупроводниковые компоненты. Очень сложен в управлении, но дает поистине впечатляющие эффекты.

История

Бифилярная катушка упоминается Николой Тесла в патенте Соединенных Штатов под номером 1894 года. Тесла объясняет, что при использовании катушки для электромагнитов её самоиндукция может быть нежелательна и может быть нейтрализована как с помощью подключения внешнего конденсатора, так и с помощью собственной ёмкости катушки специальной конструкции, которой и посвящён патент. Бифилярная катушка имеет бо́льшую собственную ёмкость, чем обычная, таким образом можно сэкономить на стоимости конденсаторов, — говорится в патенте. Следует отметить, что это применение бифилярной катушки отличается от современных.

Читайте также:
Бесплотинные гидроэлектростанции (ГЭС) своими руками

Чем уникальна катушка Тесла

Физик, применив устройство, при входной частоте в пару сотен килогерц способен получить напряжение размеров в 15 миллионов вольт и более. Собрать его можно даже дома, ведь все необходимые элементы доступны для покупки любому, достаточно посетить строительный гипермаркет и магазин электроники.

Получить можно следующие эффекты как вместе, так и по отдельности:

  1. Дугообразный разряд, характерный при использовании ламповых трансформаторов.
  2. Спарк или искры, похожий на пучок ярких веточек, которые изменяются или исчезают. Выходит из прибора на землю.
  3. Стример – тонкий направленный в воздух светящийся поток, в составе которого есть свободные электроны и атомы газа.
  4. Коронный разряд – очень красивое голубоватое свечение воздушных ионов, находящихся в электрическом поле. Образуется вокруг устройства.

Свойства бифилярной катушки Тесла

Бифилярная катушка Теслы была изобретена с целью увеличения собственной ёмкости, чтобы была возможно передавать большую мощность электрического тока. Целью изобретения Теслы было избавиться от применения дополнительных конденсаторов в приборах. Они применялись для нейтрализации самоиндукции, которая возникает в катушках и проводниках.

Изобретение бифилярной катушки Теслы позволило добиться нужного эффекта. Изготовленные по такой технологии катушки не обладают самоиндукцией. Кроме того, емкость такой катушки, полученная в результате такой конструкции, распределяется равномерно. И изменяя форму катушек и их размер, можно легко изменять полученную емкость.

Эти свойства бифиляра было впоследствии применены Александром Мишиным, который разработал свой прибор на основе этой технологии Теслы. Про катушку Мишина можно прочитать в этой статье.

Электромагнитная индукция ч.3. Н. Тесла и его загадки

Один из ранних патентов Николы Тесла описывает новый способ намотки катушек. Этот способ он назвал бифилярной намоткой, т.к. катушка мотается сразу двумя параллельными проводами и считал эту намотку очень важным изобретением:

«Бифилярная катушка — электромагнитная катушка, которая содержит две близко расположенных, параллельных обмотки. Есть четыре типа бифилярно намотанных катушек: 1. параллельная намотка, последовательное соединение; 2. параллельная намотка, параллельное соединение; 3. встречно намотанная катушка, последовательное соединение; 4. встречно намотанная катушка, параллельное соединение. Некоторые бифилярные катушки намотаны так, что ток в обеих обмотках течёт в одном и том же направлении. Магнитное поле, созданное одной обмоткой складывается с созданным другой, приводя к большему общему магнитному полю. В других — витки расположены так, чтобы ток протекал в противоположных направлениях. Поэтому магнитное поле, созданное одной обмоткой равно и направлено противоположно созданному другой, приводя к общему магнитному полю равному нулю. Это означает, что коэффициент самоиндукции катушки — ноль

Расчет катушки Тесла

Без расчетов можно изготовить слишком большой трансформатор, но разряды искры сильно разогревают воздух, создают гром. Электрическое поле выводит из строя электрические приборы, поэтому трансформатор необходимо располагать подальше.

Для расчета длины дуги и мощности расстояние между проводами электродов в см делится на 4,25, далее производится в квадрат, получается мощность (Вт).

Для определения расстояния корень квадратный от мощности умножается на 4,25. Обмотка, создающая разряд дуги в 1,5 метра, должна получать мощность1246 ватт. Обмотка с питанием в 1 кВт создает искру в 1,37 м длины.

Бифилярная катушка тесла повышение мощности

Катушка Тесла и теории эфира

В 1896 году ученый получил патент на свое изобретение – резонансный трансформатор. Он образует высокочастнотное повышенное напряжение, то есть ток высокого потенциала.

История создания начинается с опытов Тесла по доказательству существования эфира. Эфир представляет собой физическую среду, некое поле или вещество, заполняющее просторы Вселенной. Именно он, согласно идеям Тесла, отвечал за распространение гравитационного и элетромагнитного взаимодействия. До появления теории относительности концепция эфира была распространена в физике, а после этого перестала разрабатываться.

Ученый хотел использовать эфир как источник энергии, что позволило бы отказаться от проводов для передачи и распространять электричество по всему миру. Он хотел установить две гигантские катушки на северном и южном полюсах Земли. Глубоко после смерти Тесла это направление не разрабатывалось, его считали слишком уж странным ученым, а идеи – провокационными. Но, скорее всего, причина была в нежелании физика учитывать экономическую сторону при разработке идей, не рекламировал выгоду для корпораций от их реализации.

Архивы физика были частично утеряны после его смерти, а наступление эры вакуумных изобретений похоронило мысль о двух катушках на полюсах. Неизвестно, удалось ли ему получить или же доказать возможность создания бесконечного источника энергии.

Бифилярная катушка — ее разновидности и применение

Бифилярная катушка — это такая электромагнитная катушка, у которой есть в наличии две параллельных, близко расположенных обмотки. Также могут использоваться и три провода, изолированных друг от друга — такое устройство будет носить название «трифилярная катушка».

В электротехнике словом «бифиляр» описывают проводник или же провод, который изготовлен из нескольких (в частности, двух — от слова «би») жил, изолированных друг от друга. Этот термин часто используется для обозначения специальных типов проводов для обмоток трансформатора. Бифилярный провод в основном представляет собой два цветных соединенных вместе эмалированных и изолированных провода.

Бифилярная катушка- это устройство, которое нужно и можно классифицировать по способу применения. Всего существует четыре основных типа такого приспособления:

  1. Катушка с последовательным соединением и параллельной намоткой.
  2. Параллельные соединение и намотка.
  3. Катушка намотана встречно, а соединение последовательное.
  4. Обмотка катушки выполнена как и в предыдущем пункте (встречно), но соединение уже параллельное.

Бифилярная катушка обычно намотана так, что в обоих ее составляющих ток будет протекать по одному и тому же направлению. Создаваемое первой обмоткой магнитное поле будет складываться с полем, создаваемым другой катушкой. Этот эффект приводит к наложению полей и созданию общего большого магнитного потока.

Читайте также:
Солнечная батарея своими руками. Самодельная солнечная батарея. Пошаговое руководство для самостоятельного изготовления

Есть случаи, когда бифилярная катушка собирается чуть-чуть иначе. Например, когда витки обмоток расположены таким образом, чтобы электрический ток протекал в противоположных направлениях. Это так называемые катушки с нулевым коэффициентом самоиндукции (потому что магнитное поле, создаваемое одной обмоткой, будет по направлению противоположно полю, создаваемому второй обмоткой, однако будет равно ему по значению, что в случае наложения полей в сумме дает ноль).

Такие приспособления часто используют в современной электронной технике как один из способов создания резистора проволочного с маленькой индуктивностью.

Еще один тип таких устройств, как бифилярные катушки, можно увидеть в обмотках реле или трансформаторов. Их используют также в импульсных источниках электрического питания благодаря их способности подавлять обратную электродвижущую силу (ЭДС). Намотка катушек индуктивности в таком случае выполнена следующим образом. Две обмотки расположены очень близко друг к другу и намотаны параллельно друг другу, но эффективно изолированы. Основная обмотка будет управлять реле, а вот вспомогательная обмотка коротко замкнута внутри корпуса. Ток через первую обмотку прерывается (когда отключается реле), идет поглощение части магнитной энергии вспомогательной обмоткой. Такие бифилярные катушки, кроме того, вырабатывают тепло для повышения внутреннего сопротивления.

При применении такой катушки в импульсных трансформаторах одна обмотка используется в качестве рассеивателя энергии. Из-за близости намоток оба проводника улавливают один магнитный поток и компенсируют его.

Для чего нужна катушка Тесла сегодня?

Трансформатор может использоваться для создания зрелищных молний длиной много метров, что обусловливает его популярность как оборудования для зрелищ. Применяют его и для управления без проводов, беспроводной передачи энергии, а когда-то широко использовали, как тонизирующие и общеукрепляющее медицинское средство. Катушка Тесла поджигала газовые лампы, помогала искать места утечки в вакуумной системе. Существуют приборы, способные играть музыку.

Принцип действия устройства использован при создании энергосберегающих люминесцентных ламп.

Из чего состоит катушка Тесла

Что такое катушка тесла? Это две обмотки с различным числом витков, но без общего сердечника. Она повышает напряжение на выходе в десятки, а то и сотни раз.

Катушка Тесла состоит из:

  1. Источника питания.
  2. Конденсатора.
  3. Трансформатора.
  4. Тороида.
  5. Первичной и вторичной обмотки.
  6. Заземления.
  7. Разрядника.

Рассмотрим основные элементы:

  • Тороид. Катушка Тесла сделана в форме Тора или тороидальной фигуры. Это понятие нам известно из геометрии, где тором называется фигура, которая получается при вращении вокруг оси образующей окружности. Намного нагляднее этого определения обычный бублик или пончик, являющиеся тороидными фигурами. Для катушки тороид делается из алюминиевой гофры и выполняет функцию аккумулирования энергии. Он так же понижает резонансную частоту, формирует электростатическое поле, отталкивающее стримеры от вторичной обмотки.
  • Вторая основная составляющая – это вторичная обмотка из 800-1200 витков на трубе ПВХ. Количество витков определяет диаметр провода. Соотношение длины к диаметру составляет четыре или пять к одному. Покрытие сверху лаком убережет обмотку от расползания.
  • Первичная обмотка имеет низкое сопротивление по причине того, что по ней проходит мощный поток тока. Изготавливается она из провода с сечением более 6 мм. Форма бывает разной: конической, цилиндрической или плоской.
  • Защитное кольцо является витком плоской формы из заземленного медного провода. Оно необходимо, чтобы стример не повредил прибор, попав из тороида в первичную обмотку.
  • Заземление используется, чтобы замкнуть ток, иначе стримеры ударят в само устройство.


Индукционным нагревом называют явление бесконтактного разогрева проводников, расположенных в мощном переменном (обычно высокочастотном) поле внутри индуктора, происходящее вследствие токов Фуко. Статья в википедии и подробная инструкция по изготовлению данного устройства для лабораторных задач (т. е. прогрева, закалки и мелкого литья практически любых металлов, равно как и иной их термообработки), широко известная среди интересующихся темой, являются почти исчерпывающими для ознакомления с идеей и для самостоятельного построения подобного устройства.


Мой индукционный нагреватель имеет в силовой части полумост с внешним генератором IRS27952 (улучшенная версия хорошо известной IR2153, специально предназначенная для построения резонансных инверторов) и драйвером MIC4423, включенных по даташитным схемам. Развязка сделана на GDT. В силовой части стоят два IGBT-транзистора HGTG20N60A4D, обвязанные снабберами и силовыми плёнками по питанию. Питание идёт от ЛАТРа с выпрямителем и 1000 мкф в фильтре после выпрямителя. Обычно для индукционки используют генератор с подстройкой частоты и фазы (ФАПЧ), но, поскольку я ещё не принимался за её изучение, а сделать индукционку хотелось, было применено более простое и менее удобное в работе решение в виде внешнего генератора без подстройки фазы.


Полумост нагружен на ферритовый трансформатор тока на двух синих кольцах EPCOS (материал неизвестен, но работают они до 500 кгц) сечением приблизительно 16х9 мм каждое. Намотан трансформатор литцендратом для уменьшения тепловых потерь, существенных вследствие скин-эффекта на обычном проводе, и содержит около 16 витков. Точное количество можно изменять в соответствии с размерами нагреваемой заготовки, но на практике это не требуется. Трансформатор надет на медную трубку вывода индуктора. Индуктор сменный: будучи намотан медной трубкой в 6 мм диаметром, он имеет на концах припаянные трубки 8 мм диаметром, от которых при необходимости может быть отпаян и заменён на другой индуктор, например, иной формы.


Параллельно индуктору для образования резонансного контура стоят силовые плёночные конденсаторы EFD (Eurofarad). Решив, что набирать батарею MMC из мелких плёнок типа К78-2 или CBB61, как это обычно делают, слишком утомительно, я взял заказанные некоторое время назад в США эти белые «таблетки», специально предназначенные для использования в индукционных нагревателях. При ёмкости в 3.75 мкф каждая, и будучи соединены последовательно, они образуют превосходный конденсатор на

Читайте также:
Самодельный солнечный коллектор из старого холодильника

1.8 мкф, предназначенный для работы при большой реактивной мощности и больших токах.


Контроль работы осуществляется на данный момент осциллографом, подключенным одним каналом к GDT (одному витку через него), а вторым — к трансформатору тока в первичной обмотке трансформатора индукционки. Согласно его показаниям, ток в первичном контуре через ключи достигает 50 ампер при правильной регулировке, активная мощность при этом может быть до 3 киловатт (9-10А потребление по постоянному току из розетки). На ключах выделяется очень небольшая её часть, а охлаждение индуктора проточной водой позволяет избежать и его саморазогрева своим же полем.

Сам процесс разогрева и плавки — отдельная тема, относящаяся больше к металлургии, чем к электронике, и выходящая за рамки данной статьи. Индукционка нагревает стальной болт М12, опущенный шляпкой в индуктор, дожелта примерно за 15-20 секунд, в зависимости от его положения в индукторе, как видно из видео. Более мелкие объекты разогреваются просто моментально. Несколько хуже греются цветные металлы, хуже всего — медь (КПД при этом наиболее низкий, ниже только при нагреве серебра).

Интересный эффект наблюдается при использовании индуктора специальной формы и нагреве алюминия: ввиду сочетания высокой проводимости и малой плотности он начинает левитировать внутри индуктора. Чтобы предотвратить выталкивание его полем за пределы индуктора, делают индуктор, во-первых, конусовидной формы, и, во-вторых, содержащим т. н. обратный виток: крайний верхний виток наматывают в другую сторону, чем остальные витки индуктора, и его поле стабилизирует летающий кусочек алюминия, не давая ему улететь. Форму индуктора следует подбирать довольно тщательно, мои эксперименты пока не дали устойчивой левитации, хотя сам эффект имеет место (как видно из последней части видео).

При помещении внутрь индуктора теплоизолированного тигля можно заниматься литьём металлов. К сожалению, первый же эксперимент в этой области окончился несколько неудачно: около 20-30 грамм кипящей стали раскололи тигль, не выдержавший контраста температур расплава и водоохлаждаемой трубки, и вылились огромной раскалённой каплей прямёхонько на мой многострадальный ковёр, воспламенив его и начав прожигать дыру до деревянного пола. Пламя сбили огнетушителем, а каплю стали пришлось заливать водой из чайника. В результате в ковре образовалась огромная чёрная дыра с углём. Мораль — необходимо использовать по крайней мере керамический лоток или подобный несгораемый поддон при занятии такой хренотенью.


Более удачной была плавка меди: удалось сплавить около 90 г. в этакую медную чушку. Она выглядит, конечно, ужасно, но тем не менее.

Поделиться в соц. сетях

Конфигурации трансформатора

За годы, прошедшие после изобретения трансформатора, появилось множество его конфигураций.

  • SGTC – катушка имеет классическое устройство и работает на искровом разряде. Позволяет получить длинный стример без добавочных эффектов. Элементом коммутации выступает разрядник, выполненный из двух кусков толстого проводника. Когда речь идет про мощные устройства, то применяют вращающиеся разрядники и электродвигатели.
  • VTTC – катушка Тесла, созданная на базе электронной лампы, выступающей коммутирующим элементов. Может работать в постоянном режиме, выдавая длинные, толстые разряды. Стример имеет форму факела.
  • SSTC – ключом является полупроводниковый элемент – мощный транзистор. Может работать без перерывов, порождая стимеры любой формы и играя музыку.
  • DRSSTC – имеет два контура резонанса. Ключами являются полупроводниковые компоненты. Очень сложен в управлении, но дает поистине впечатляющие эффекты.

Генератор свободной энергии — «Назад в будущее»

В середине семидесятых в журнале «Наука и жизнь» промелькнула интересная статья, где один изобретатель, изучающий передачу электрической энергии без проводов, изобрёл генератор электрической энергии из двух проволок. Проволоки эти были необычными. Каждая проволока начиналась медью, а заканчивалась алюминием. Длина проволок, судя по фотографии, была примерно 70 см. Изобретатель пальцами руки держал лампочку накаливания 2,5 вольта, которая ярко светилась. Проволоки висели в воздухе и никуда не были подсоединены!

На алюминиевую фольгу положите салфетку, сверху медную спираль, смочите салфетку водой и подсоедините тестер. Показания тестера будут выше 0,5 вольта. Тестер показывает больше, чем разность потенциалов металлов, иногда показания превышают 1 вольт.

Наше объяснение этого эффекта:

Происходит стекание зарядов от минуса (алюминий) к плюсу (медь), при этом свободные нейтроны в воде приобретают минусовой потенциал и количество электронов увеличивается — это объясняет увеличение напряжения.

После многочисленных экспериментов с ионным ветром, электризации жидкостей, разностью потенциалов металлов мы создали генератор свободной энергии, взяв за основу плоскую бифилярную катушку Тесла.

Генератору свободной энергии дали название «НАЗАД в БУДУЩЕЕ»!

Генератор свободной энергии вы можете сделать своими руками и провести массу интересных экспериментов, а также вы можете стать соавтором нашего изобретения и получать дальнейшие разработки генератора «Назад в будущее» по требованию на E-mail: [email protected]

Чем уникальна катушка Тесла

Физик, применив устройство, при входной частоте в пару сотен килогерц способен получить напряжение размеров в 15 миллионов вольт и более. Собрать его можно даже дома, ведь все необходимые элементы доступны для покупки любому, достаточно посетить строительный гипермаркет и магазин электроники.

Получить можно следующие эффекты как вместе, так и по отдельности:

  1. Дугообразный разряд, характерный при использовании ламповых трансформаторов.
  2. Спарк или искры, похожий на пучок ярких веточек, которые изменяются или исчезают. Выходит из прибора на землю.
  3. Стример – тонкий направленный в воздух светящийся поток, в составе которого есть свободные электроны и атомы газа.
  4. Коронный разряд – очень красивое голубоватое свечение воздушных ионов, находящихся в электрическом поле. Образуется вокруг устройства.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: