Доработка (апгрейд) акустической системы Радиотехника S30

Форумы сайта “Отечественная радиотехника 20 века”

  • Отечественная радиотехника XX векаСписок форумовРАДИОТЕХНИКА 20 ВЕКАЗвукотехника
  • Поиск

Переделка колонок Radiotehnika S-30

Переделка колонок Radiotehnika S-30

Через некоторое время после переезда в новый город, я обнаружил возле дверей своего дома пару колонок S-30. По их внешнему виду было сразу заметно, что над ними успели поработать. Но, к сожалению, у одной из них не было динамика. Безо всякой задней мысли я забрал исправную колонку – вдруг пригодиться, а пока, послужит тумбочкой. Каково было мое удивление, когда я через пару дней обнаружил у подъезда еще один комплект S-30. На этот раз, мне достались совершенно не тронутые, советских времен колонки. Тогда я уже начал понимать, что без нормального усилка я дальше не смогу.
Не прошло и пары недель, как я стал счастливым обладателем усилителя Любава-85-стерео, аналогом Радиотехники-101. Первое прослушивание прошло в унынии и безысходности… Совковые колонки, хрипели, фыркали из всех щелей, дребезжали панелями, плевались полуразложившимся параллоном и дурно попахивали. Так как я уже занимался доработкой свеновского саба, что делать с колонками мне было ясно с самого начала. Выкидывать? Нет! Переделывать!
Первым делом я сходил в строительный магазин и приобрел там:

• Силиконовый герметик (наше все в твикинге)
• Войлок (утеплительный, дорогой, в садовом отделе)
• Несколько пенно-пласмассовый трубок для утепления водопроводных труб
• Клей ПВА
• Вата
• 4м 1.0 аудиокабеля, и прочее для пайки
• 20 черный 2см саморезов

Потом наступил момент разборки колонок. Вот тут то я очень пожалел, что не взял вторую колонку без динамика. Они, оказывается, были довольно не плохо доработаны, и достаточно было бы поставить недостающую запчасть из советского аналога. Ну, ничего, подумал я, мы смогем и лучше!
Выкрутил ужасные блестящие шурупы с передней панели, да, они, конечно же, были уже сорваны! Пришлось помучаться. Снял решетки, динамики, хмм, пластилин все еще держался, вот же делать умели в совках… В первой улучшенной колонке, новый пластилин уже начал превращаться в какие то сопли, а по виду то прошло не больше 5 лет. Заметил расположения плюса и минуса на динамиках и пищалках и маркером пометил их, так как ни каких отметок «+» и «-» на динамиках найдено не было. Обрезал провода, ведущие внутрь корпуса, и извлек задние крыши с платами фильтров. Носки с ватой сразу в топку, ну или можно скурить .
К сожалению, фотографировать начал только на стадии оклейки войлоком =.

Отвертку нож в зубы, и через час возни деревянный корпус колонки зачищен от черного пластилина, который, по истечению долгих лет, приобрел интересной свойство пачкать все, словно вакса. Задние крышки лучше от пластилина не очищать, а просто выровнять его, и заполнить счищенным с корпуса излишками канавку на крышке, так позже будет легче добиться ее герметичного прилегания.
Дальше взял волшебный силиконовый герметик и промазал изнутри все стыки стенок. Измерил внутренние размеры корпуса (если мне не изменяет память, то они составляют 325 высота, 180 высота и 145 глубина), выкроил из войлока нужные куски и вырезал в них соответствующие отверстия. На мой взгляд, для демпфирования боковых стенок достаточно одного 5мм слоя войлока, так как они имеют хорошую толщину. А вот на переднюю и заднюю тонкую стенку надо минимум 2 слоя войлока. Так я и сделал. Приклеивал все с помощью ПВА.

Дальше нужно разобраться с туннелями фазоинверторов. Оригинальные сделаны из сгнившего и рассохшегося параллона, и имеют 80мм длину и 30мм диаметр. Плюс, к тому же, на передней пластмассовая крышке есть выступ, входящий во внутрь фазоинвертора, и служащий отличнейшим проводником вибраций. Параллоновая порнография была выкинута, за место нее в ход пошли утеплительные трубки для водопроводных труб. Задача стояла сделать систему из колец внешним диаметром 65мм, внутренним 30мм и с длинной внутреннего канала 100мм (не знаю почему, интуитивно решил сделать фазики длинной в 10см). Мне хватило всего двух колец для достижения желаемых параметров. Склеивалось, промазалось все силиконовым герметиком, сверху была намотана изолента, так, чтобы была . Позже выяснилось, что внутреннюю трубку нужно было сделать выступающей из корпуса на 5мм, для более плотного прилегания к передней пластиковой панели.

Теперь, пришла очередь самого сложного, на мой взгляд, этапа – доработки фильтра. Сперва, нужно решить, нужен ли вам индикатор перегрузок, мигает он довольно прикольно. Но я решил, что если он не делает звук лучше, что бесспорно, то значит он лишний в схеме.

Выпаял элементы, отвечающие за индикацию перегрузки – VD1, VD2, C1, C2, R3, R4, R5. Все семь элементов компактно расположены в верхнем правом углу платы, если смотреть на фотографию, которая приведена выше. Только, на ней почти не видно VD1, который находится четь левее C1. Если лень выпаивать все это, можно аккуратно убрать элементы кусачками, только смотрите чтоб кз не было.
Конечно же, оригинальные тонкие металлические провода тут не годятся, и я заменил их на акустические из безкислородной меди. Провода, которые пойдут к динамикам, я завел прямо на плату, по возможности минуя сигнальные дорожки. Вот что получилось.

Эффективный экономер электроэнергии (реально рабочий, полнейшая инструкция)

База самоделок для всех!

  • Главная
  • Самоделки
  • Дизайнерские идеи
  • Видео самоделки
  • Книги и журналы
  • Партнеры
  • Форум
  • Самоделки для дачи
  • Приспособления
  • Автосамоделки
  • Электронные самоделки
  • Самоделки для дома
  • Альтернативная энергетика
  • Мебель своими руками
  • Строительство и ремонт
  • Для рыбалки и охоты
  • Поделки и рукоделие
  • Самоделки из материала
  • Самоделки для ПК
  • Cуперсамоделки
  • Другие самоделки
Читайте также:
Индикатор биоэнергии

Эффективный экономер электроэнергии

(реально рабочий, полнейшая инструкция, уникальный материал!)

Инструкция по сборке и наладке прибора

для безучетного потребления электроэнергии

Содержание

1. Предыстория. Краткий обзор версий
2. Подробное описание схемы и принцип действия
3. Детали и конструкция
4. Инструкция по сборке и наладке

Предыстория. Краткий обзор версий.

Идея создания подобного устройства возникла еще в 1998 году, после знаменитого «Дефолта», когда простому обывателю погреться в холодное время года стало роскошью. То есть теплосети работали, но толку от них было мало, а цена на электроэнергию стремительно росла, опережая зарплату. Вот тогда и появился спрос на всякие там «отмотки». Тогда самым ходовым был трансформаторный способ отмотать счетчик, но он требовал вмешательства в схему учета (надо было поменять фазу и ноль на входе счетчика или взять фазный провод до учета). Раньше было проще — тупо вскрыл, поменял концы, и мотай себе назад. Придет инспектор — лицо кирпичом: типа не я, не знаю и т. д. Да и не каждый инспектор туда лазил. Времена менялись, энергонадзор стал придирчивее, теперь за сорванную пломбу — штраф. А если в доме найдет безучетную розетку, благо уйму приборов изобретено для поиска таковых, мало не покажется.

В начале 2000-х в интернете появилась первая схема для электронной отмотки счетчика. Тогда за схему просили от 50 до 150 долларов США. Подумали всей лабораторией, скинулись да кутили. Я даже счет на Вэбманях открыл. В комплекте оказалось аж три схемы — одна для отмотки, две — способ «обогрев». Долго изучали схемы, высказывали свои мысли, и.

Принцип работы основывался на том, что в первую и четвертую четверть периода сетевого напряжения заряжался накопительный конденсатор током повышенной частоты, а во вторую и четвертую — тупо разряжался назад, в сеть. Автор утверждал, что высокочастотная нагрузка, дескать, не заметна счетчику. В качестве накопительного там использовался полярный электролитический конденсатор. В общем, при первом включении этот самый конденсатор вспучило, если бы не реакция одного человека, кто-то мог остаться без гюз. Опять скинулись, купили батарею неполярных. Включили. Заработало. То есть не совсем. Осциллограммы совпадали с исходными, правда ток оно потребляло, и не маленький, при общей емкости 200 мкФ, амперметр показывал почти 10 ампер. Транзисторы (КТ848А) кипели. Ну ладно. Первым, кто забрал прибор на домашние испытания, был наш зав. кафедрой. На следующий день он торжественно объявил — НИ ХРЕНА оно не отматывает! Правда, и счетчик не особо нагружает, а провода греет. После того, как каждый из нас перетаскал это чудо дамой, в очередной раз скинулись, купили еще и счетчик. Испытали другие схемы —результат тот же. Играли с частотой, скважностью, фазой заряд-разряд, короче со всеми параметрами, которые можно подкорректировать. Результата не было, точнее был — пополнялись горы спаленных радиоэлементов. Дело забросили.

Вспомнили с появлением других схем в интернете и появлением в нашем коллективе новых молодых бойцов. Скачивали все подряд, но в архивах было либо то же самое, либо «усовершенствованное, улучшенное», а принцип оставался тот же — горы, правда уже более современных элементов, росли.

Попадались даже платные архивы и добровольцы, которые отправляли CMC, a потом кусали себя за локти.

Теперь ближе к делу. В схемах с накопительным конденсатором, сом конденсатор является нагрузкой, потому что он заряжается на возрастающей четверти периода, для того, чтоб повернуть диск счетчика назад, его надо зарядить как минимум до напряжения выше сетевого. А если применить дроссели для той же цели? Мысль интересная, и возникла у одного из наших новых электрофакеров. Правда, технически реализовать разряд дросселя в счетчик оказалось сложнее, чем конденсатора. Индуктивность после прекращения тока, может отдать при определенных условиях, энергии даже больше накопленной, но в обратной полярности.

Первая работоспособная схема появилась на свет в ноябре 2009 г. В схеме дроссель работал на частоте 100 Гц. То есть, как и в конденсаторном варианте первая четверть периода — накопление энергии, затем вторая четверть через ключи разрядка в сеть. Правда, экономила она 70-75 процентов мощности нагрузки. Третья и четвертая — по аналогии, только на другой полуволне. Все бы ничего, да габариты устройства для киловаттной нагрузки были очень уж громоздкими. Дроссель мотали на железе от киловаттного трансформатора от сварочного аппарата. Конструкция в народе не пользовалась спросом, поэтому разработки велись в сторону уменьшения габаритов и себестоимости.

Вторым этапом стало перемещение рабочей частоты в сторону единиц килогерц, с модуляцией удвоенной сетевой частотой. Кстати, осциллограммы на сайте, соответствуют именно этой схеме. Дроссель мотали уже на пермаллоевых сердечниках. Принцип остался тот .же, за исключением того, что энергия передавалась в дроссель-обратно несколько сотен раз за период. Схема завоевала популярность среди изготовителей. Но пермаллой – довольно эксклюзивный раритетный материал, и его запасы в наших недрах оказались черезчур ископаемыми. Да и повышенная чувствительность к соотношению мощность-индуктивность дросселя деюла ее узконаправленной. Хотя. Встраивал ее народ в электрокотлы, электроплиты. Это март 2010 года.

Дальше стал вопрос: либо снижать габариты, либо удешевлять производство. В сентябре 2010 родилась еще одна идея. А зачем вообще синхронизировать это все с сетью? Разработки пошли в двух направлениях: увеличение частоты или использование доступных материалов. Схемы обоих устройств одинаковые, различия только в рабочей частоте, моточных данных и номиналами некоторых элементов. Именно эти два варианта и легли в основу данного документа. А в ноябре 2010 года, один из наших покупателей предложил еще и защиту от перегрузок по току и превышения выходного напряжения.

Читайте также:
Отпугиватель комаров

Эффективный экономер электроэнергии (реально рабочий, полнейшая инструкция)

С постоянным, бешеным ростом цен на электроэнергию и другие энергоносители, на отечественном рынке стала актуальна продажа разнообразных приспособлений и приборов для её эффективной экономии. Самыми большими и затратными приборами являются те, которые преобразуют электрическую энергию в тепловую, например, водонагреватель, электроплита, электрические чайники, фены, стиральные машины в режиме нагрева воды, утюг и так далее. Как известно, те приборы, которые обладают большей мощностью, обладают также и большим током потребления, именно из-за него и происходит вращение диска счётчика учёта расхода электроэнергии, если это, конечно, устаревшие счётчики. В новых импульсных счётчиках электроэнергии нет уже механического вращающего диска, который, в свою очередь, вращает и сам счётчик отсчитывающий кВт/ч, оплачиваемые из кошелька потребителя.

Что представляет собой энергосберегающий прибор

Энергосберегатель – компактное устройство в пластиковом серебристом корпусе с 2 светодиодами на черной панели. На корпусе нанесен логотип с названием фирмы-производителя. По внешнему виду экономитель напоминает зарядное устройство для гаджетов.

Внутреннее устройство довольно простое: прибор состоит из электронной платы, пленочного конденсатора, источника питания для светодиодов и диодного мостика.

Многим непонятно, как возможна экономия при такой элементарной конструкции и низкой цене. Чтобы разобраться в этом вопросе, нужно вспомнить о том, что такое электричество.

Прибор экономии своими руками

Прибор для измерения силы

Изготовление прибора, экономящего электроэнергию, может быть реализовано и самому, только для этого нужно собрать устройство согласно принципиальной схемы.

Запчасти и комплектующие для прибора можно купить на рынке или в специализированном магазине, все их установить на плату и простым навесным монтажом выполнить соединение. А также для создания устройства понадобится:

  • Пластмассовый корпус;
  • Шурупы;
  • Пленочный конденсатор;
  • Два светодиода;
  • Механизм подключения в розетку, в виде электрической вилки;
  • Кнопка;
  • Диодный мостик или выпрямитель;

Обязательно при сборке такой электрической схемы самостоятельно, необходимо быть очень осторожным и бдительным, и соблюдать элементарные правила безопасности при выполнении работ с паяльником и с электрооборудованием. Без базовой специализации электрика лучше не приступать к реализации этой идеи, так как, скорее всего, ждёт неудача.

Нужно быть осмотрительным с фирмами-производителями, пытающимся просто улучшить своё финансовое состояние на доверии простых людей. Для того чтобы разузнать, всю правду об экономии устройством вашей электроэнергии, потребителю, который решил экономить таким способом, следует понять и разобраться в устройстве и назначении всех деталей, находящихся внутри очередной чудо коробочки.

Принцип действия энергосберегателя

Мощность электроэнергии подразделяется на активную и реактивную. Счетчик считывает расходование активной энергии. Именно о ее экономии и задумываются потребители, покупая подобные энергосберегающие приборы. Получается, что реактивная энергия уменьшает интенсивность работы системы и создает помехи. Она вырабатывается в индукционной системе.

На больших производствах мощные двигатели создают соответствующую реактивную мощность. На электростанциях с высоким напряжением устанавливают специальные счетчики для учета ее потребления. А для снижения расходов ставят компенсаторы.

В быту учет реактивной мощности не ведется из-за ее ничтожно малой величины. Энергосберегатель преобразует реактивную энергию в активную, превращая ее в полезную. Тем самым снижается расход учтенного счетчиком электричества и затраты на его оплату.

Виды и способы экономии электроэнергии

Как же экономить электроэнергию, передаваемую от компании поставщика электроэнергии потребителю? Все способы экономии электроэнергии можно разделить на легальные (законные) и на незаконные, которые могут привести к штрафам и судебным разбирательствам.

Легальные виды экономии электрической энергии:

  • Переход на альтернативные источники электроэнергии, такие как солнечные батареи. Достаточно дорогой, но эффективный способ, с помощью которого, в дальнейшем, вообще можно будет отказаться от услуг поставщика электроэнергии;
  • Выведения из использования устаревших приборов освещения таких как, лампы накаливания и переход на освещение, на основе светодиодов. Светодиод — это полупроводниковый прибор, который работает на малых токах, и при этом обладает хорошей светоотдачей;
  • Организация освещения с помощью приборов, имеющих разнообразные датчики (движения, освещённости и т. д.), которые включаются только при срабатывании его, и не тратят электроэнергию когда в помещении свет не нужен;
  • Отключение в выключателях лампочек подсветки и индикации, светящихся в темноте. А также отключение электронных приборов из розеток, которые включены в режиме ожидания, но всё равно счётчик от них неумолимо накручивает электроэнергию;
  • Контроль за включенным, без особой надобности освещением и других потребителей электрической энергии;
  • Специальные приборы для экономии электроэнергии продаваемые на отечественном рынке, которые направлены на уменьшение потребления электроэнергии;

Только комплексное применение и использование всех этих способов и приспособлений может дать хороший ощутимый результат и значительно уменьшить расход электроэнергии, а значит и затраты на его оплату.

Незаконные виды экономии электрической энергии:

  • Установка специального счётчика на дистанционном управлении. Одним лёгким нажатием на кнопку д/у можно остановить счётчик или уменьшить его скорость, другой включить его заново в режим нормального отсчёта электроэнергии. Такой счётчик устанавливается вместо обычного;
  • Остановка механического счётчика путём остановки диска;
  • Подключение к сети мимо счётчика, умельцы электрики могут взять, допустим, ноль от собственного заземлителя, но при этом нужно отключить нулевой провод от питающего автомата;

Хотелось бы напомнить что все эти способы незаконны и чреваты не только отключением от сети, но и огромными штрафами за использование ворованного электричества. Поэтому перед тем как решится на такой отчаянный, нелегальный, противозаконный шаг, лучше сто раз подумать. Экономия — это конечно хорошо, но лучше без нарушения закона и с чистой совестью.

Сколько можно сэкономить

Производители приборов обещают 30-процентное сбережение энергии. Некоторые считают это утверждение мифом. Вполне возможно, причиной неудовлетворительных отзывов об устройстве можно считать покупку экономителя от китайских производителей. В таких приборах устанавливаются низкомощные конденсаторы.

Читайте также:
Немного о трансформаторах

Нужно не только правильно выбрать устройство, но и подсоединить к сети особым образом. Нужно выбирать розетку, которая расположена рядом с бытовой техникой. Стоять устройство должно сразу после счетчика. Экономитель включают в сеть в момент наибольшей нагрузки. Электричество, проходя через него, избавляется от реактивной мощности.

Прибор снижает потребление энергии за счет преобразования и перераспределения мощности. Есть положительные отзывы покупателей, свидетельствующие о снижении расхода электроэнергии не менее чем на 15% при нагрузке до 19 кВт.

Можно самостоятельно подсчитать экономию от энергосберегателя. Если на старых счетчиках отображалась скорость потребления электричества по движущемуся диску, то на электронных устройствах незаметно включение прибора. Для этого следует снять и записать показания счетчика в определенное время. Включить прибор в розетку, расположенную рядом со счетчиком и большим количеством включенной техники. О подключении свидетельствуют загоревшиеся индикаторы.

Чтобы замеры были точными, нужно отследить, чтобы количество включенных приборов было неизменным до окончания замера показаний. На следующий день в то же время снова снять показания счетчика. Таким образом можно подсчитать энергоэффективность прибора.

Как изготавливается самодельный генератор, которым обеспечивается экономия электричества

Первое, что необходимо сделать, — это закрепить шайбы на лопастях кулера. Очень важно, чтобы все шайбы были закреплены одинаково. Это позволит избежать возникновения дисбаланса и биений во время работы будущего самодельного генератора.

Затем необходимо взять магниты, извлеченные из старого жесткого диска. Эти магниты имеют вот такой вид:

Три магнита следует закрепить с помощью клея на опорах кулера. Приклеивая их, нужно обращать внимание на то, чтобы они не мешали вращению лопастей.

Четвертый магнит необходимо разделить на две половинки. Одну из этих половин надо приклеить на четвертую опору кулера. Магнит берется не целый для того, чтобы создаваемое магнитами поле было неоднородным. Точку крепления магнитной половинки следует подобрать так, чтобы лопасти кулера начали самопроизвольно вращаться. Поскольку это вращение является самопроизвольным, кулер превращается в некоторое подобие вечного двигателя.

Вращающиеся лопасти заставляют вращаться моторчик кулера, в результате чего он начинает производить электрический ток, т.е. превращается в генератор.

Что предлагают производители

На современном рынке успехом пользуются модели Intelliworks, SP-002, SmartBoySP001, Power Saver, Saving-Box, SmartBox, Energy Saver. Производители Saving-Box обещают даже до 50% экономии электроэнергии. По заявлениям производителей, экономители обладают следующими преимуществами:

  • фильтруют высокочастотные помехи в сети переменного тока;
  • защищают включенные устройства от скачков напряжения;
  • перераспределяют электроэнергию в сети.

В торговой сети можно встретить как однофазные устройства мощностью до 15 кВт, так и трехфазные мощностью до 45 кВт.

Мы не можем гарантировать и советовать купить прибор, так как лично его не тестировали. Информацию анализировали из официальных источников, обзоров, и отзывов пользователей.

Как выглядит экономитель и из чего он состоит

Данное устройство выглядит очень компактно и стоит совершенно недорого, что в принципе и подкупает потребителя, а также побуждает его расстаться со своими кровно заработанными деньгами во благо будущей огромной экономии. Как утверждает рекламный текст на них – «чудо» аппарат не только сэкономит затраты электроэнергии, но даже каким-то образом сможет защитить все включенные в розетки электроприборы от скачков напряжения во время грозы и попадания молнии. Ниже представлен самый часто встречающийся в магазинах прибор для экономии электричества, который изготовитель называет Electricity Saving Box.

На лицевой панели установлены два светодиода, сигнализирующие об исправности экономителя и его готовности выполнять возложенные на него функции. Он может иметь несколько переходников для подключения к разным по конструкции розеткам, для того чтобы он мог быть более универсален. Конструкция экономителя энергии также может иметь различные формы прямоугольные или круглые, от этого суть его работы не меняется.

На тыльной части указаны технические параметры экономителя электроэнергии:

  • Модель.
  • Рабочее напряжение от 90 до 250 В.
  • Частота переменного тока в электросети, 50 Гц-60 Гц.
  • Максимальная мощность нагрузки, при которой он эффективен 15 000 Вт, то есть 15 кВт.
  • Серийный номер.

Некоторые из экземпляров рассчитаны на довольно большие нагрузки, что в первую очередь должно насторожить покупателя, иногда бывают такие модели, что указана мощность даже до 40 кВт. При такой мощности ток должен быть примерно 180 А, что в бытовых условиях не применяется, так как вводные автоматы чаще всего имеют номинальный рабочий ток 25, ну или же 63 А максимум. Ну, допустим, пусть это максимальный показатель экономителя, и он работает в пол силы, с запасом по мощности.

Принцип работы прибора для экономии электроэнергии, как опять же утверждают рекламные ресурсы и производитель, основан на преобразовании реактивной составляющей в активную и отдаче её в сеть, тем самым экономитель убирает реактивную составляющую из сети. Действительно, мощность потребляемая из сети содержит как активную, так и реактивную составляющую. На крупных подстанциях предприятий устанавливаются так называемые компенсаторы реактивной мощности, которая создаётся большими индуктивными нагрузками. Она появляется вследствие работы асинхронных двигателей, трансформаторов и всего того, что переделывает электроэнергию в электромагнитное поле. Компенсирующими устройствами служат:

  1. Включаемые поперечно батареи конденсаторов.
  2. Реакторы.
  3. Синхронные двигатели в режиме компенсации (перевозбуждения).

Вот так вот выглядят компенсаторы реактивной мощности, на основе конденсаторной батареи:

Однако счётчики, установленные на предприятиях и распределительных подстанциях, ведут учёт как активной, так и реактивной составляющих, а в домашних условиях стоят элементы учёта, которые считают только активную энергию. Поэтому нет смысла компенсации реактивных мощностей, тем более что в бытовых устройствах она настолько несущественная, что даже не стоит её учитывать.

Читайте также:
Крутое освещение комнаты светодиодной лентой

Для того чтобы убедится и разобраться в устройстве экономителя, придется разобрать его и посмотреть, что же внутри его, конденсаторная компенсационная батарея или синхронный генератор. И вот, что оказывается там внутри:

А вот его схема:

Несколько электронных элементов таких как конденсатор, резисторы, светодиоды, и диодная сборка для выпрямления сетевого напряжения, и в лучшем случае её предохранитель. По сути, это электрическая схема для питания светодиодов, и не более, которая не только не даст экономии электричества, но и наоборот потребляет какую-то хоть и малую, совсем незначительную часть электроэнергии для свечения светодиодов. Приборы, подключаемые от розетки, почти не имеют реактивной энергии, да и как писалось выше, счётчик её не считает поэтому эффект экономии нулевой.

Важно! Сейчас мы говорим не только об экономителе электроэнергии Electricity Saving Box, но и о таких приборах, как Эконор и Power Saver. Все они являются разводом, никакого реального толку от их использования, а тем более экономии электрической энергии, конечно же нет! Под этой статьей мы предоставили ссылки на более рациональные и к тому же легальные способы, позволяющие меньше платить за свет!

Энергоэффективность в офисе: как снизить реальное энергопотребление?

Мы много говорим о возможностях экономии энергии в ЦОД за счет продуманного размещения оборудования, оптимального кондиционирования и централизованного управления электропитанием. Сегодня речь пойдет о том, каким образом можно экономить энергию в офисе.

В отличие от центров обработки данных электроэнергия в офисах нужна не только технике, но и людям. Поэтому получить здесь коэффициент PUE на уровне 1,5–2, как в современных ЦОД, не получится. Людям нужно отопление, освещение, кондиционирование, они пользуются микроволновыми печами, ездят на лифтах и постоянно включают кофеварку. На само ИТ-оборудование приходится лишь 10–20 % энергопотребления, а все остальное берет техника, необходимая человеку.

Это часто создает проблемы, так как во многих городах РФ энергии производится меньше, чем потребляется. По данным СО ЕЭС, в 2017 году такая ситуация складывалась в 49 регионах РФ, несмотря на ввод в эксплуатацию более 25 гВт мощностей за последние 5 лет. Крупные офисные центры в Москве и других мегаполисах часто не могут обеспечить большой запас мощности для каждого арендатора. Поэтому оптимизация энергопотребления остается не только способом экономить, но также конкурентным преимуществом, методом адаптации к современным условиям.

Не нужно греть (и охлаждать) пустой офис

По статистике, самым затратным является кондиционирование помещения. Зимой офисы требуют нагрева, а летом — охлаждения. Поэтому на кондиционеры и отопительные приборы приходится более половины всех энергозатрат. Однако прочая техника и освещение также вносят немалый вклад в ежемесячную смету расходов, которую при желании можно уменьшить на десятки процентов.

Кондиционеры и отопительные приборы могут работать постоянно, но это не имеет никакого смысла, если в офисе никого нет, например ночью или на выходных. Используя программируемые термостаты можно настроить включение и выключение климатической техники по расписанию, чтобы к приходу персонала на работу в офисе была подходящая температура, но при этом отсутствовали лишние затраты в то время, когда людей просто нет на рабочих местах.

Контроль окон помогает экономить

Большие окна, характерные для современных офисов, являются основными причинами энергопотерь. Зимой через них уходит тепло, а летом — нагревается воздух, который затем приходится охлаждать. Поэтому если энергоэффективность является приоритетом, с окнами нужно что-то делать. Наиболее эффективные варианты подразумевают:

  • Использование специальных пленок и стекол, удерживающих тепло (для северных регионов) и не позволяющих солнцу излишне нагреть воздух (в южных регионах).
  • Установку рольставней и жалюзи с автоматическим приводом. Можно запрограммировать закрывание и открывание окон согласно таймеру, а также в зависимости от температуры воздуха в офисе и на улице.

Можно использовать зимой энергию от ИТ-оборудования

ПК и серверы, установленные прямо в рабочей зоне, не только создают много шума, но также нагревают воздух. Энергопотребление современного компьютера составляет порядка 100–200 Вт, и если в офисе работает даже всего 20 человек, их техника создает нагрев, эквивалентный масляному радиатору на 2 кВт.

Поскольку сегодня все чаще используется виртуализация рабочих мест, можно разместить все нагрузки в серверном помещении, а пользователям предоставить доступ через энергоэкономичные тонкие клиенты. Кроме повышения комфорта в офисе летом такой ход позволяет получить дополнительный обогрев зимой. Для этого нужно продумать систему вентиляции и рекуперации (передачи тепла), чтобы воздух, выходящий из серверной, нагревал офисное помещение.

Умное освещение

Затраты на освещение стали намного ниже с появлением светодиодных ламп. Интеллектуальное управление светом позволяет дополнительно сократить расходы.

Модуль управления светом с датчиком движения

Например, выключатели с датчиками движения и освещенности позволяют включать свет только в тех случаях, когда в помещениях находятся люди, а уличного света из окон недостаточно для комфортной работы. Более того, современные лампы DALI поддерживают возможность интеллектуального диммирования. На основе показаний датчиков система управления включает светильники с той мощностью, которая необходима для получения оптимального уровня освещения. При таком подходе в ясную солнечную погоду в офисе вообще не будет затрат на искусственный свет, а ближе к вечеру лампы начнут светить все ярче.

Кондиционирование электроэнергии

Скачки напряжения и прочие помехи — обычное явление для наших электросетей. Для того чтобы защитить от них чувствительную технику, используются активные фильтры. Источники бесперебойного питания (ИБП) обеспечивают работу критически важного оборудования при отключении электропитания.

Блок кондиционирования электроэнергии Delta PCS

Еще большего эффекта позволяют добиться установки кондиционирования электроэнергии. Например, системы Delta PCS (Power Conditioning System) используют аккумуляторы для того, чтобы компенсировать пики энергопотребления, не создавая дополнительную нагрузку на центральную электросеть. Кроме этого они помогают бороться с проблемой реактивной мощности. Из-за неравномерного распределения нагрузки в электросетях (включился лифт, кто-то в офисе варит себе кофе, уборщица работает пылесосом) часть мощности становится реактивной, в результате чего происходит нагрев проводников и оборудования. Уровень потерь в этом случае может составлять от нескольких единиц до 50 % от полезной мощности. Показатель реактивной мощности серьезно возрастает при увеличении количества электронных устройств, использующихся в здании. В этом случае решения класса PCS позволяют снизить уровень реактивной мощности и значительно сократить энергопотребление.

Читайте также:
Простой индукционный нагреватель своими руками

Комплексное управление электропитанием

Максимальной экономии энергии можно добиться при использовании комплексной системы мониторинга и управления энергопотреблением. Например, решения Delta enteliWEB позволяют управлять через веб-интерфейс инженерными системами здания или офиса. Вы можете подключить к системе управления кондиционеры, нагреватели, лампы и светильники, а также бытовую технику — вообще любые приборы со стандартными интерфейсами. После этого вы сможете контролировать энергопотребление всей сети, определять источники нагрузки и управлять приводами и реле, чтобы обеспечить одновременно максимальный комфорт и энергоэкономию. Как раз такое решение было представлено на выставке COMPUTEX 2019. «Зеленый» кинотеатр (ссылка на прошлый пост) самостоятельно определяет наличие и количество зрителей в зале, а также управляет освещением и приводами штор на окнах, меняя освещение перед показом, во время сеанса и после его завершения.

Система управления Delta enteliWEB

Когда нужно больше энергии

Часто электросети просто не могут предоставить компании дополнительную мощность либо ее стоимость оказывается очень высокой. Практика показывает, что для обеспечения пиковой нагрузки можно использовать дополнительные аккумуляторы и источники бесперебойного питания. Запасенной энергии будет достаточно для непродолжительного роста нагрузки. Например, показанные на COMPUTEX 2019 аккумуляторные системы Battery Energy Storage разрабатывались именно для решения подобных задач.

Новые инверторы Delta PV

Впрочем, никто не отменяет «зеленой» энергии, которую можно получить от солнца и ветра. Современные высокоэффективные солнечные панели могут служить источником нескольких дополнительных киловатт, а инвертор Delta PV inverter M70A позволяет использовать получаемую от солнца энергию, при этом уровень КПД составляет 98,7%. В дополнение к этому инвертор интегрируется с облачными системами мониторинга генерации электричества.

89 способов экономии электроэнергии

В этой статье мы поговорим про способы экономии электроэнергии:
  1. Способы экономии электроэнергии на предприятии
  2. Как экономить электроэнергию в офисах
  3. Способы экономии электроэнергии в школе и детском саду
  4. Как экономить электроэнергию в частном доме
  5. Способы экономии электроэнергии в быту

Для экономии электроэнергии вам достаточно принять простые и доступные меры, а также соблюдать некоторые правила.

В качестве доказательства тому, мы приведем 89 наиболее эффективных способа экономии электроэнергии, которые можно применять в различных сферах деятельности.

Способы экономии электроэнергии на предприятии

Добиться экономии электроэнергии на предприятии позволяет внедрение следующих мер:

Сокращение стоимости электроэнергии

  • Выбор оптимальной ценовой категории электроснабжения. Существует шесть ценовых категорий электроснабжения. У каждой есть свои плюсы и минусы, своя стоимость и условия работы.
  • Подключиение к внешней сети электроснабжения по наивысшему уровню напряжения. Чем выше уровень напряжения вашего подключения к сети, тем ниже стоимость электроэнергии. Узнать, какие есть уровни напряжения и как это влияет на стоимость электроэнергии.
  • Сокращение стоимости мощности электроэнергии. Сократить стоимость мощности электроэнергии можно путем сглаживания пиков и изменения графика нагрузки.
  • Выбор оптимального тарифа по передаче электроэнергии. Существует два тарифа по передаче электроэнергии – одноставочный и двуставочный. Выбор правильного тарифа снижает стоимость электроэнергии.
  • Переход на обслуживание к независимой энергосбытовой компании. Как правило, стоимость электроэнергии у независимых энергосбытовых компаний ниже чем у гарантирующего поставщика. Узнать, как это работает.
  • Выход на оптовый рынок электроэнергии. Большинство организаций и предприятий покупают электроэнергию на розничном рынке электроэнергии. У крупных предприятий есть возможность выйте на оптовый рынок электроэнергии и, тем самым, сократить стоимость электроэнергии на 3% – 5%.

Снизим ваши затраты на электроэнергию на 5% – 30%

Оборудование

  1. Применение частотно-регулируемых приводов на оборудовании с переменной нагрузкой.
  2. Использование современных устройств плавного пуска оборудования. Это позволяет не только сэкономить электроэнергию, но и защитить электродвигатели от выхода из строя в процессе пуска.
  3. Установка устройств компенсации реактивной мощности. Устройства компенсации реактивной мощности позволяют сократить потери в сетях электроснабжения, а также улучшить качество электроэнергии.
  4. Тепловизионное обследование электрооборудования для обнаружения мест перегрева и сокращения потерь электроэнергии.
  5. Оптимизация настроек и графика работы систем вентиляции и кондиционирования.
  6. Повышение эффективности работы кондиционеров путем регулярной чистки и обслуживания.
  7. Применение оборудования, работающего на нетрадиционных или возобновляемых источниках энергии – солнечные батареи, ветряные электростанции, биогазовые установки и мини гидроэлектростанции.
  8. Постепенная замена устаревшего офисного оборудования на оборудование с высоким классом энергоэффективности А – А++.

Освещение

  1. Замена ламп накаливания, а также люмисцентных ламп на современные светодиоды.
  2. Применение современных систем управления освещением – датчики движения, присутствия и таймеры.
  3. Уличное освещение: замена традиционных ламп ДРЛ, ДРИ и ДНАТ на светодиодные светильники.
  4. Применение секционного и точечного освещения на складах и производстве.
  5. Окраска стен в светлые тона. Это позволяет увеличить степень естественной освещенности помещений и тем самым обеспечить экономию электроэнергии на освещении на 3% – 5 %.
  6. Обследование системы освещения здания, а также уличного освещения.

Обследование освещения • Измерение уровня освещенности

Организационные и малозатратные мероприятия по экономии электроэнергии

  1. Ввод новой должности в штатное расписание, отвечающей за энергохозяйство предприятия. Специалист должен заниматься разработкой и внедрением методов по рациональному потреблению электричества.
  2. Обучение сотрудников энергосбережению, правильному обращению с компьютерной техникой и другим оборудованием.
  3. Замена старой аудио- и видеоаппаратуры на более современную и экономичную.
  4. Правильная эксплуатация компьютерной техники. Выключать технику в течение дня не нужно, однако следует настроить выключение монитора и последующий переход в спящий режим при простое более 4-5 минут. В среднем ПК потребляет до 500 Вт. Отключение монитора обеспечивает экономию энергии около 100 Вт. Неиспользуемый компьютер, даже в спящем режиме, потребляет до 200-300 Вт в течение двух часов. За месяц лишнее потребление энергии может достигать 12 кВт. Неиспользуемое периферийное оборудование следует всегда отключать.
  5. Установка современных высокоточных приборов учета электроэнергии.
  6. Выявление потерь электроэнергии с помощью энергетического обследования.
Читайте также:
Детектор фальшивой валюты

Практически все вышеперечисленные меры позволяют сэкономить до 15 % потребления электроэнергии.

Способы экономии электроэнергии на работе

Как экономить электроэнергию в офисах

Вот основные способы экономии электроэнергии в офисе.

Малозатратные мероприятия

  1. Настройка работы компьютерной техники – сюда относится все вышесказанное для предприятий. При возможности замените настольные компьютеры ноутбуками, которые потребляют в несколько раз меньше энергии.
  2. Установка резиновых накладок на двери, которые скрывают щель между дверным полотном и полом. Накладки позволяют сохранить холодный воздух летом, когда работает кондиционер.
  3. Использование светоотражающих пленок на окнах, которые уменьшают нагрев помещения в летнее время, что позволяет также снизить нагрузку на кондиционер. (как выбрать энергоэффективный кондиционер).
  4. Регулярная чистка, обслуживание, обследование системы вентиляции и кондиционирования.

  1. Уборка помещений в рабочее время, а не в темное время суток, после того, как сотрудники покинут свои рабочие места. Временное неудобство, доставляемое уборщицей, приведет к немалой экономии средств.
  2. Обязательное выключение приборов освещения в конце рабочего дня либо использование современных источников управления приборами освещения, о которых было сказано выше. Также для офисов отличным решением является применение диммеров, позволяющих настраивать интенсивность приборов освещения.
  3. Применение энергосберегающих источников освещения, таких как светодиодные лампы.
  4. Если в офисе используются настольные ПК и сетевое подключение к сети, добиться экономии энергии позволяет сокращение длины сетевых кабелей. Для этого необходимо грамотно расставить рабочие столы и правильно расположить коммутатор.
  5. Мероприятия, направленные на развитие культуры энергосбережения коллектива. Это позволит сформировать бережливую модель поведения сотрудников. К таким мероприятиям относятся не только беседы и обучение использованию электрооборудования, но и памятки в рабочих кабинетах.

Высокозатратные способы экономии электроэнергии в офисе

  1. Применение современных окон с повышенной светопропускной способностью.
  2. Замена старого офисного оборудования современным. Старые копиры, мониторы, принтеры и прочая техника может потреблять на 50%-90 % электроэнергии больше, чем современная. Поэтому, ее замена со временем окупится.
  3. Своевременное обновление «железа» ПК. Современные процессоры и видеокарты при более высокой мощности потребляют в несколько раз меньше энергии, чем модели 5-10-летней давности.
  4. Отказ от высокой мощности компьютеров. Офисным ПК не требуются игровые видеокарты и сверхмощные процессоры, если только работа не связана с 3D-графикой, видеомонтажом или другими задачами, требующими от техники высокой производительности. Использование офисных моделей «железа» обеспечит наилучший баланс компьютеров между быстродействием и энергоэкономностью.
  5. Использование альтернативных источников энергии, к примеру, солнечных панелей.

Энергетическое обследование

8(499)490-60-60

  1. Применение бытовой техники класса А энергоэффективности.
  2. Применение энергоэффективных окон. К примеру, окна с тройным стеклопакетом защитят помещение от перегрева в летнее время и снизят нагрузку на кондиционер.
  3. Применение качественной проводки. Старая или неправильно выполненная проводка повышает не только пожароопасность, но и количество нерационально потребляемой электроэнергии.
  4. Использование сетевых фильтров, позволяющих одним выключателем отключать от сети все подключенное к ним оборудование. Учтите, что даже акустическая система, подключенная к сети, потребляет, в среднем, около 11 Вт/час.

Способы экономии электроэнергии в школе и детском саду

Сэкономить энергию в школах и детских садах позволяют следующие действия:

  1. Использование энергоэффективных долговечных ламп. Эта мера, как показывает практика, быстро окупается.
  2. Оптимизация времени начала занятий, чтобы не возникала необходимость использовать приборы освещения на первых уроках.
  3. Использование диммеров.
  4. Окраска помещений в светлые тона, которые отражают свет, что, как уже было сказано, позволяет повысить уровень освещенности и повысить время естественного освещения аудиторий.
  5. Правильная установка холодильного оборудования – между стенкой и теплообменником обязательно должен оставаться зазор, обеспечивающий нормальную циркуляцию воздуха.
  6. Также снизить энергопотребление холодильного оборудования позволяет периодическая очистка теплообменников от пыли.
  7. Отключение всего электрооборудования, когда оно не используется. Как показывает практика, принтеры, компьютеры, аудиоаппаратура и другое оборудование не выключается после окончания занятий, что приводит к значительному перерасходу энергии.

Способы экономии электроэнергии в школе и детском саду

  1. Настройка компьютерного оборудования для обеспечения максимального энергосбережения.
  2. Использование секционного освещения, это позволяет осветить только те участки помещений, которые в этом нуждаются.
  3. Повышение мотивации учеников – проведение воспитательных бесед и уроков, посвященных энергосбережению и защите окружающей среды.
  4. Использование современного аудио- видеооборудования и бытовой техники.
  5. Внедрение систем отслеживания расхода энергии.

Энергетическое обследование • Программа энергосбережения • Консультация

Как и в случае с предприятиями и офисами, обеспечить наибольшую эффективность мер по энергосбережению позволяет энергоаудит здания.

Энергетическое обследование это комплекс действий, подразумевающий собой обнаружение источников нерационального использования энергии, а также разработку эффективной программы по улучшению показателей энергоэкономности заведения или предприятия.

Как экономить электроэнергию в частном доме

Как экономить электроэнергию в частном доме

В частном доме, как и на любом другом объекте, крайне важно организовать эффективное использование энергоресурсов.

Наиболее действенными являются следующие способы экономии электроэнергии.

  1. Использование электродных или индукционных котлов.
  2. Применение термостатов и таймеров, позволяющих оптимизировать режим работы электрооборудования.
  3. Внедрение систем «умный дом» и интернет вещей, позволяющих оптимизировать время работы электрооборудования, а также управлять ими дистанционно.
  4. Отказ от ванны в пользу душевой кабины, если в доме установлен электрический водонагреватель.
  5. Своевременная очистка водонагревателя и электрочайника от накипи.
  6. Использование моек с клапаном для экономии теплой воды.
  7. Использование летней печи на дровах вместо электроплиты. Особенно актуально для домов, расположенных поблизости с лесом.
  8. Применение твердотопливного обогревателя с варочной поверхностью для экономии электроэнергии в отопительный сезон.
  9. Использование холодильника и другой бытовой техники класса А+++.
Читайте также:
Креативный способ ремонта штекера у наушников своими руками

  1. Применение индукционной плиты, которая разогревает не конфорку, а сами продукты. КПД такой плиты достигает 90 %, так как тепло не уходит в воздух.
  2. Эксплуатация кондиционера только с закрытыми окнами и дверьми.
  3. Применение светодиодных ламп, зонирование пространства приборами освещения, а также использование диммеров и элементов, фиксирующих присутствие человека.
  4. Использование маломощных ламп там, где не требуется высокая яркость освещения.
  5. Использование для освещения двора фотовольтажных светильников.
  6. Использование розеток с таймерами, что позволяет программировать время включения и отключения электрооборудования.

Способы экономии электроэнергии в быту

Чтобы сэкономить энергию в быту, совсем не обязательно отказываться от всех благ цивилизации.

Главное – рационально ими воспользоваться. Поможет в этом соблюдение следующих рекомендаций.

  1. Отключайте гаджеты от зарядного устройства сразу же после того, как батарея зарядится.
  2. Это позволит не только сэкономить энергию, но и продлить срок службы аккумулятора.
  3. Не оставляйте компьютерную технику и телевизоры работать в режиме ожидания, так как они продолжают расходовать энергию.
  4. Имейте привычку: выходя из комнаты, выключать свет.
  5. Не ставьте в холодильник горячие продукты. Старайтесь оставлять свободное пространство.
  6. Следите за целостностью уплотнителей холодильника.
  7. Готовьте пищу с закрытой крышкой, это позволит сократить время приготовления.
  8. Старайтесь применять для приготовления пищи скороварки.
  9. В морозильной камере холодильника не допускайте образование наледи.
  10. Стирка белья осуществляйте большими объемами, что позволит сэкономить не только электроэнергию, но и воду. В то же время не перегружайте стиральную машинку, так как это увеличит ее энергопотребление на 10 %.

  1. Оптимальная температура воды при стирке для большинства случаев составляет 30 градусов. Не забывайте, что основная часть энергии при стирке тратится на нагрев воды.
  2. Используйте режим ручной стирки, который сохранит не только вещи, но и электроэнергию.
  3. Установите холодильник вдали от источников тепла, таких, как плита или радиаторы отопления.
  4. Отключайте в ночное время не только компьютерную технику, но и роутер.
  5. Когда от компьютера не требуется высокая производительность, работайте в режиме экономии энергии, который можно настроить через панель управления, в разделе «Электропитание».
  6. Пользуйтесь «экономным» режимом при использовании любой бытовой техники.
  7. Всегда извлекайте диски из оптических приводов, так как при включении привод начинает раскручивать диск и считывать с него информацию, что приводит к дополнительным затратам энергии.

  1. Не настраивайте мониторы и телевизоры на максимальную яркость.
  2. Откажитесь от просмотра видео в чрезмерно высоком качестве. Визуально разница в качестве, как правило, незаметна, при этом значительно повышается расход энергии, так как увеличивается нагрузка на «железо».
  3. Всегда держите окна в чистоте, так как это позволит впустить в жилье большее количество света, а значит вы сможете дольше использовать естественное освещение.
  4. Регулярно производите чистку фильтров кондиционера.
  5. Никогда не используйте неисправные электроприборы.
  6. На даче, где горячая вода требуется время от времени, целесообразнее использовать проточный водонагреватель, так как он не расходует энергию на поддержание определенной температуры воды.
  7. Своевременно очищайте пылесборник пылесоса.
  8. Протирайте приборы освещения от пыли.
  9. Старайтесь по возможности использовать микроволновую печь, так как она потребляет на 50 % меньше энергии, чем электроплита и электродуховка.
  10. Извлекайте зарядные устройства из розеток, даже если вы ничего не заряжаете. В течение часа они потребляют минимум энергии, но за месяц несколько постоянно подключенных зарядных устройств могут накрутить энергии на приличную сумму.
  11. Не устанавливайте возле кондиционера с термостатом приборы, излучающие тепло.

Соблюдение большинства из этих правил позволит экономить энергию не только дома, но и везде, где бы вы не находились.

Поэтому их стоит соблюдать не только самому, но и доносить до сведения коллектива.

Способы экономии электроэнергии на производстве

Энергосбережение или экономия электроэнергии является практической реализацией научных, правовых, технических, организационных, экономических и производственных мероприятий, направленных на рациональное использование и расходование энергетических ресурсов, а так же на внедрение в хозяйственный оборот рациональных возобновляемых источников энергии. Энергосбережение и экономия электроэнергии – важная задача сохранения наших природных ресурсов.

Повышение энергоемкости некоторых производств, увеличение количества техники, задействованной в производственных процессах на предприятиях и постоянный рост цен на энергоносители явилось серьезным фактором в решении вопроса об экономии электроэнергии.

К сожалению универсального способа экономить электроэнергию сейчас не существует, однако разработаны многочисленные методики, устройства и технологии, которые помогают перевести энергосбережения на качественно новый и лучший уровень.

Вопрос экономии электроэнергии достаточно многоплановый и необходим стратегический подход, для максимально эффективного использования всех производственных мощностей при минимально возможных энергетических затратах.

Выработаны подходы к экономии электроэнергии, основанные на использовании и практическом внедрении энергосберегающих технологий, призванных уменьшить потери электроэнергии там, где это возможно.

На данный момент уже существует много устройств, применение которых позволяет добиться сокращения потерь при работе электрического оборудования. Основными устройствами из них является частотно-регулируемые приводы и конденсаторные установки.

Применение конденсаторных установок для энергосбережения за счет компенсации реактивной мощности позволяет обеспечить существенную экономию электроэнергии.

Оптимизация режимов потребления электроэнергии при использовании конденсаторных установок дает возможность снижения токовых нагрузок на аппаратуру и сетевые кабели.

Возможные пути и методы в экономии электроэнергии:

1) Внедрение электрогенерирующего оборудования на основе газо – и паротурбинных, , газопоршневых, турбодетандерных и парогазовых установок.

2) Переход на частотно-регулируемые приводы на оборудовании с изменяемой нагрузкой.

3) Использование менее энергоёмких насосных установок.

4) Внедрение автоматизированных систем управления технологическими процессами АСУ (“энергоэффективность”).

Читайте также:
Самодельная активная вытяжка с фильтром для паяльных работ

5) Внедрение систем управления освещением, энергоэффективных осветительных устройств и секционное разделение освещения.

6) Замена электрокотельных и электроводонагревательных приборов источниками тепла, работающими на местных видах топлива (торф, пелеты).

7) Ввод энергогенерирующего и технологического оборудования, работающего с использованием горючих вторичных энергоресурсов (ВЭР) и отходов производства.

8) Внедрение нетрадиционных и возобновляемых источников энергии (гелиоколлекторы, ГЭС, ВЭУ, биогазовые установки)

Каждое из этих мероприятий позволяет снизить потребление энергии в среднем на 15%.

На производстве рекомендуется проведение следующих мероприятий для уменьшения объема используемых энергетических ресурсов при сохранении соответствующего полезного эффекта от их использования:

1. Установить преобразователи частоты, благодаря которым за счет частотного регулирования появляется возможность управлять производительностью технологического оборудования, что положительно сказывается на его функциональности и показателях энергоэффективности.

2. Установить приборы учета электрической энергии.

3. На каждом предприятии приказом или распоряжением назначить лицо, ответственное за энергохозяйство, в обязанности которого должно входить:

• обеспечение выполнения своевременного и качественного технического обслуживания, планово-предупредительных ремонтов и профилактических испытаний электрооборудования, измерение сопротивления изоляции и заземления;

• организация проведения расчетов потребления электроэнергии и осуществление контроля за ее расходованием;

• непосредственная разработка и внедрение мероприятий по рациональному потреблению электроэнергии.

4.Не допускать увеличение максимальной мощности без разрешения на технологическое присоединение.

5.Осуществлять контроль за режимом горения светильников на предприятии.

6.Заменить светильники с лампами накаливания на светильники с лампами дневного

света или светодиодами, предназначенными для офисных помещений и рабочих мест.

8.Окрасить стены помещений в светлые тона для увеличения освещенности. Окраска стен в светлые тона позволяет экономить 5-15% электроэнергии, вследствие увеличения уровня освещенности от естественного и искусственного освещения.

9.Повысить эффективность использования электроэнергии при автоматизации управления освещением (датчики движения, присутствия, реле времени).

10.Заменить электрооборудование, силовую, аудио- и видеоаппаратуру на современную, более экономичную. Например, к концу срока службы лампы падает КПД лампы, светильника. Светильники, выпущенные 20 лет назад, имели КПД максимум 65%, а современные светильники имеют КПД до 95%.

11.Правильно пользоваться компьютерной техникой. При активной работе за компьютером в течение дня, выключать и включать его не стоит, но стоит выключать монитор или запрограммировать переход в «спящий режим» через 4-5 минут. Компьютер потребляет до 400-500 Вт мощности, выключение монитора позволяет экономить до 100-200 Вт. Не стоит оставлять его включенным на длительное время, если вы за ним не работаете. Неиспользуемый 2 часа компьютер даже в «спящем режиме» потребляет 200-300 Вт, за месяц это порядка 12 кВт·ч. Принтеры и сканеры рекомендуется всегда выключать, если они не используются. Это позволит сэкономить еще порядка 2-3 кВт·ч за месяц.

12. Исключить в помещениях не предусмотренные проектом электронагревательные приборы для отопления.

13. Вести ежемесячный учет расхода электроэнергии с оформлением «Ведомости снятия показаний приборов учета электроэнергии», согласно договору электроснабжения.

14. Содержать в чистоте окна, стены, потолки, пол помещений, а также осветительную арматуру.

15. Установить УПП (Устройства плавного пуска). Применение устройств плавного пуска позволяет уменьшить пусковые токи, снизить вероятность перегрева двигателя, повысить срок службы двигателя, устранить рывки в механической части привода или гидравлические удары в трубопроводах и задвижках в момент пуска и остановки электродвигателей.

Экономитель электроэнергии: обещания и реальность

Экономия электричества – это одна из наиболее распространенных забот многих наших современников. В одной из наших статей этой темы мы уже касались. Там мы рассказывали вам о приемах, позволяющих уменьшить объем энергопотребления.

Сегодня к этому же вопросу мы намерены подойти с другой стороны. Речь о пойдет об электрогенераторе-самоделке, сделать который по силам практически любому человеку. Причем этот простенький генератор сможет запросто обеспечивать питание сразу нескольких лампочек освещения.

Статью о способах экономии электричества вы можете почитать вот здесь.

Как изготавливается самодельный генератор, которым обеспечивается экономия электричества

Первое, что необходимо сделать, — это закрепить шайбы на лопастях кулера. Очень важно, чтобы все шайбы были закреплены одинаково. Это позволит избежать возникновения дисбаланса и биений во время работы будущего самодельного генератора.

Затем необходимо взять магниты, извлеченные из старого жесткого диска. Эти магниты имеют вот такой вид:

Три магнита следует закрепить с помощью клея на опорах кулера. Приклеивая их, нужно обращать внимание на то, чтобы они не мешали вращению лопастей.

Четвертый магнит необходимо разделить на две половинки. Одну из этих половин надо приклеить на четвертую опору кулера. Магнит берется не целый для того, чтобы создаваемое магнитами поле было неоднородным. Точку крепления магнитной половинки следует подобрать так, чтобы лопасти кулера начали самопроизвольно вращаться. Поскольку это вращение является самопроизвольным, кулер превращается в некоторое подобие вечного двигателя.

Вращающиеся лопасти заставляют вращаться моторчик кулера, в результате чего он начинает производить электрический ток, т.е. превращается в генератор.

Что нам рассказывают производители?

Рынок и интернет-магазины представляют сейчас такое количество подобных устройств, что глаза разбегаются, не знаешь, какой выбрать. Как только производители не именуют свои приборы – экономайзеры, энергосберегатели, экономители.

Чтобы сделать правильный выбор, многие начинают читать отзывы. Честно сказать, этого лучше никогда не делайте, лживых отзывов очень много, поэтому не верьте, а разберитесь досконально во всём сами.

Рассмотрим, как происходит «экономия» электроэнергии на примере энергосберегающего прибора «ELECTRICITY SAVING BOX». Зайдя на сайт, где предлагают приобрести (да ещё и со скидкой 50%) такое устройство, мы с первой страницы узнаём, что, оказывается, уже каждая вторая европейская семья приобрела для дома такой сберегатель, и полным ходом экономит энергию и деньги. Ни один магазин, офис, автомастерская, салон красоты, ресторан или жилой дом не обходятся без него.

Читайте также:
Генератор Маркса своими руками

Дополнительные преимущества

Производитель указывает, что устройство не только экономит энергию, но и обладает ещё рядом преимуществ:

  1. Нет никакого обмана счётчика, просто с подключением прибора энергия используется эффективнее и достигается экономический результат.
  2. Продлевается срок службы электрической бытовой техники.
  3. Сводятся к минимуму вредные для человека электромагнитные излучения, которые исходят от электрических приборов и проводки.
  4. Эффективность такого прибора не голословна, она подтверждена многочисленными исследованиями и имеет научное объяснение.

А использовать прибор легко и просто. Достаточно включить его в розетку, и через 1-2 месяца он полностью окупит затраченные средства, снижая ежемесячный платёж за электроэнергию на 30-50%.

Принцип действия и схема прибора

Как же объясняет действие такого чудесного устройства инструкция по его применению?

Электроэнергия состоит из двух составляющих – активной и реактивной. Активная энергия – полезная, именно её используют бытовые приборы для своей работы. Реактивная энергия – невидимая, она создаёт в сети дополнительную нагрузку. Вследствие этого увеличивается ток потребления. Плюс ко всему реактивная энергия наводит вредные электромагнитные поля. Согласно инструкции завода-изготовителя энергосберегающий прибор убирает из сети реактивную составляющую. За счёт чего снижается ток, потребляемый бытовыми приборами из сети. Соответственно меньше становится расход электроэнергии и затраты на её оплату.

А теперь давайте посмотрим, из чего состоит схема прибора, чтобы он в реальности мог обеспечивать такой экономический эффект. Внешне выглядит он довольно симпатично – пластиковый серебристый корпус, а на чёрной вставочке блестящий логотип с названием фирмы. В корпус встроены электрические контакты в виде штепсельной вилки. Ещё имеются один или два светодиода, которые указывают на включенное положение прибора.

Открутив один шуруп, которым скрепляются две корпусные половинки, можно увидеть небольшую электронную плату с минимумом компонентов и плёночный конденсатор (ёмкость его небольшая, около 6 микрофарад). Если внимательно изучить схему, собранную на плате, то станет понятно, что она просто-напросто обеспечивает индикацию светодиодов.

Сборка электрической цепи

Только что сделанный самодельный генератор производит постоянный ток напряжением около 12 вольт. Чтобы запитать электроприборы, работающие от переменного тока, потребуется преобразователь. В качестве такого преобразователя можно воспользоваться старым блоком питания, который обычно преобразует 220 вольт переменного тока в 9 вольт постоянного, заставив его работать в обратном направлении:

  • его выход на 9 вольт использовать в качестве входа напряжения, поступающего от генератора;
  • вход блока питания использовать в качестве выхода, поставляющего переменное напряжение 220 вольт.

В проводе, выходящем из кулера, имеется три проводника. Тот из них, который имеет желтую оплетку, оказывается совершенно ненужным. Его можно просто отрезать. Остальные же проводники подсоединяются к бывшему выходу блока питания с соблюдением их цветности.

Чтобы преобразователь мог питать сразу несколько потребителей его, используя, например, клеммную колодку, можно соединить с обычным тройником.

Эффективный экономер электроэнергии (реально рабочий, полнейшая инструкция)

Эффективный экономер электроэнергии

(реально рабочий, полнейшая инструкция, уникальный материал!)

Инструкция по сборке и наладке прибора

для безучетного потребления электроэнергии

Содержание 1. Предыстория. Краткий обзор версий 2. Подробное описание схемы и принцип действия 3. Детали и конструкция 4. Инструкция по сборке и наладке

Предыстория. Краткий обзор версий.

Идея создания подобного устройства возникла еще в 1998 году, после знаменитого «Дефолта», когда простому обывателю погреться в холодное время года стало роскошью. То есть теплосети работали, но толку от них было мало, а цена на электроэнергию стремительно росла, опережая зарплату. Вот тогда и появился спрос на всякие там «отмотки». Тогда самым ходовым был трансформаторный способ отмотать счетчик, но он требовал вмешательства в схему учета (надо было поменять фазу и ноль на входе счетчика или взять фазный провод до учета). Раньше было проще — тупо вскрыл, поменял концы, и мотай себе назад. Придет инспектор — лицо кирпичом: типа не я, не знаю и т. д. Да и не каждый инспектор туда лазил. Времена менялись, энергонадзор стал придирчивее, теперь за сорванную пломбу — штраф. А если в доме найдет безучетную розетку, благо уйму приборов изобретено для поиска таковых, мало не покажется.

В начале 2000-х в интернете появилась первая схема для электронной отмотки счетчика. Тогда за схему просили от 50 до 150 долларов США. Подумали всей лабораторией, скинулись да кутили. Я даже счет на Вэбманях открыл. В комплекте оказалось аж три схемы — одна для отмотки, две — способ «обогрев». Долго изучали схемы, высказывали свои мысли, и…

Принцип работы основывался на том, что в первую и четвертую четверть периода сетевого напряжения заряжался накопительный конденсатор током повышенной частоты, а во вторую и четвертую — тупо разряжался назад, в сеть. Автор утверждал, что высокочастотная нагрузка, дескать, не заметна счетчику. В качестве накопительного там использовался полярный электролитический конденсатор. В общем, при первом включении этот самый конденсатор вспучило, если бы не реакция одного человека, кто-то мог остаться без гюз. Опять скинулись, купили батарею неполярных. Включили. Заработало. То есть не совсем. Осциллограммы совпадали с исходными, правда ток оно потребляло, и не маленький, при общей емкости 200 мкФ, амперметр показывал почти 10 ампер. Транзисторы (КТ848А) кипели. Ну ладно. Первым, кто забрал прибор на домашние испытания, был наш зав. кафедрой. На следующий день он торжественно объявил — НИ ХРЕНА оно не отматывает! Правда, и счетчик не особо нагружает, а провода греет. После того, как каждый из нас перетаскал это чудо дамой, в очередной раз скинулись, купили еще и счетчик. Испытали другие схемы —результат тот же. Играли с частотой, скважностью, фазой заряд-разряд, короче со всеми параметрами, которые можно подкорректировать. Результата не было, точнее был — пополнялись горы спаленных радиоэлементов. Дело забросили.

Читайте также:
Автономная зарядка для сотового телефона

Вспомнили с появлением других схем в интернете и появлением в нашем коллективе новых молодых бойцов. Скачивали все подряд, но в архивах было либо то же самое, либо «усовершенствованное, улучшенное», а принцип оставался тот же — горы, правда уже более современных элементов, росли.

Попадались даже платные архивы и добровольцы, которые отправляли CMC, a потом кусали себя за локти.

Теперь ближе к делу. В схемах с накопительным конденсатором, сом конденсатор является нагрузкой, потому что он заряжается на возрастающей четверти периода, для того, чтоб повернуть диск счетчика назад, его надо зарядить как минимум до напряжения выше сетевого. А если применить дроссели для той же цели? Мысль интересная, и возникла у одного из наших новых электрофакеров. Правда, технически реализовать разряд дросселя в счетчик оказалось сложнее, чем конденсатора. Индуктивность после прекращения тока, может отдать при определенных условиях, энергии даже больше накопленной, но в обратной полярности.

Первая работоспособная схема появилась на свет в ноябре 2009 г. В схеме дроссель работал на частоте 100 Гц. То есть, как и в конденсаторном варианте первая четверть периода — накопление энергии, затем вторая четверть через ключи разрядка в сеть. Правда, экономила она 70-75 процентов мощности нагрузки. Третья и четвертая — по аналогии, только на другой полуволне. Все бы ничего, да габариты устройства для киловаттной нагрузки были очень уж громоздкими. Дроссель мотали на железе от киловаттного трансформатора от сварочного аппарата. Конструкция в народе не пользовалась спросом, поэтому разработки велись в сторону уменьшения габаритов и себестоимости.

Вторым этапом стало перемещение рабочей частоты в сторону единиц килогерц, с модуляцией удвоенной сетевой частотой. Кстати, осциллограммы на сайте, соответствуют именно этой схеме. Дроссель мотали уже на пермаллоевых сердечниках. Принцип остался тот .же, за исключением того, что энергия передавалась в дроссель-обратно несколько сотен раз за период. Схема завоевала популярность среди изготовителей. Но пермаллой — довольно эксклюзивный раритетный материал, и его запасы в наших недрах оказались черезчур ископаемыми. Да и повышенная чувствительность к соотношению мощность-индуктивность дросселя деюла ее узконаправленной. Хотя…. Встраивал ее народ в электрокотлы, электроплиты…. Это март 2010 года.

Дальше стал вопрос: либо снижать габариты, либо удешевлять производство. В сентябре 2010 родилась еще одна идея. А зачем вообще синхронизировать это все с сетью? Разработки пошли в двух направлениях: увеличение частоты или использование доступных материалов. Схемы обоих устройств одинаковые, различия только в рабочей частоте, моточных данных и номиналами некоторых элементов. Именно эти два варианта и легли в основу данного документа. А в ноябре 2010 года, один из наших покупателей предложил еще и защиту от перегрузок по току и превышения выходного напряжения.

Список файлов архива:

ec2.pdf — собственно схема; readme.pdf — описание и все по сборке и настройке; calc103 — программа для расчета дросселя на феррите; parametry diodov i tranzistorov.zip — здесь можете подобрать себе транзисторы и диоды; RadioAmCalc 1.17.zip — программа для расчета дросселя на железе; read_me.txt — этот файл.

По факту:

calc103 parametry diodov i tranzistorov RadioAmCalc 1.17 обман счетчика.mpg.FLV SHEMA 3(version 26.12.2010).jpg readme.pdf SHEMA 1(version 26.12.2010).pdf SHEMA 2(version 26.12.2010).pdf key.txt read me.txt

electrofuck.zip (36.2 МБ)

Смотрите также:

  • Халявная электроэнергия. Экононимайзер
  • Сверхэкономичный нагреватель воды своими руками
  • Эффективный источник питания асинхронного двигателя

Возможности самодельного генератора

Для того чтобы проверить возможности самодельного генератора, автор описанной конструкции подключил к нему сразу 3 лампочки по 70 Вт. Все они загорелись полным накалом.

Вполне понятно, что к данному источнику электроэнергии можно подключать лишь такие приборы, которые не отличаются высокой требовательностью. Различные виды электроники, например, не смогут стабильно работать ввиду возможных скачков напряжения.

Итак, если вы запитаете от этого самодельного генератора хотя бы некоторые осветительные приборы, то существенная экономия электричества вам обеспечена. Интерес этого устройства состоит и в том, что изготовление его по силам даже совершенно неискушенным людям.

Холодильник: 160–550 кВт·ч в год

Сколько тратит

В отличие от остальной техники холодильник работает 24/7 — и этого не изменить. Поэтому при выборе важно смотреть на два показателя: класс энергопотребления и годовой расход кВт·ч — эти параметры есть в технических характеристиках.

Класс энергопотребления Среднее энергопотребление в год, кВт·ч Средняя стоимость энергопотребления, руб.
А+++ 160 779
А++ 240 1168
А+ 300 1461
А 350 1704
B 450 2191
С 550 2678

Правда, бывают и ситуации, когда даже класс не играет решающей роли. Например, холодильник А++ может прожигать столько же, сколько и модель класса А, — это зависит от объёма, количества рефрижераторов и дополнительных функций.

Как сэкономить

Пожалуй, единственный способ сократить траты на холодильник — это продлить срок его службы. Для этого есть несколько простых советов:

  • не устанавливайте холодильник рядом с плитой
  • не ставьте внутрь горячую еду
  • своевременно размораживайте — если нет функции No Frost.

Математика проста: если у вас сломался прибор класса А с затратами в 2000 рублей в год, можно заменить его на класс А++, который будет обходиться в 1000 рублей в год. Но при этом за саму покупку придётся отдать минимум 30 000 рублей — и «отобьётся» она только через 30 лет.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: