Делаем простой проблесковый маячок своими руками

Как сделать мигающий светодиод

Мигающие светодиоды часто применяют в различных сигнальных цепях. В продаже довольно давно появились светодиоды (LED) различных цветов, которые при подключении к источнику питания периодически мигают. Для их мигания не нужны никакие дополнительные детали. Внутри такого светодиода смонтирована миниатюрная интегральная микросхема, управляющая его работой. Однако для начинающего радиолюбителя намного интереснее сделать мигающий светодиод своими руками, а заодно изучить принцип работы электронной схемы, в частности мигалок, освоить навыки работы с паяльником.

  1. Как сделать светодиодную мигалку своими руками
  2. Простая мигалка на светодиоде
  3. Мигающий светодиод на одной батарейке

Как сделать светодиодную мигалку своими руками

Существует множество схем, с помощью которых можно заставить мигать светодиод. Мигающие устройства можно изготовить как из отдельных радиодеталей, так и на основе различных микросхем. Сначала мы рассмотрим схему мигалки мультивибратора на двух транзисторах. Для ее сборки подойдут самые ходовые детали. Их можно приобрести в магазине радиодеталей или «добыть» из отживших свой срок телевизоров, радиоприемников и другой радиоаппаратуры. Также во многих интернет магазинах можно купить наборы деталей для сборки подобных схем led мигалок.

На рисунке изображена схема мигалки мультивибратора, состоящая всего из девяти деталей. Для ее сборки потребуются:

  • два резистора по 6.8 – 15 кОм;
  • два резистора имеющие сопротивление 470 – 680 Ом;
  • два маломощных транзистора имеющие структуру n-p-n, например КТ315 Б;
  • два электролитических конденсатора емкостью 47 –100 мкФ
  • один маломощный светодиод любого цвета, например красный.

Не обязательно, чтобы парные детали, например резисторы R2 и R3, имели одинаковую величину. Небольшой разброс номиналов практически не сказывается на работе мультивибратора. Также данная схема мигалки на светодиодах не критична к напряжению питания. Она уверенно работает в диапазоне напряжений от 3 до 12 вольт.

Схема мигалки мультивибратора работает следующим образом. В момент подачи на схему питания, всегда один из транзисторов окажется открытым чуть больше чем другой. Причиной может служить, например, чуть больший коэффициент передачи тока. Пусть первоначально больше открылся транзистор Т2. Тогда через его базу и резистор R1 потечет ток заряда конденсатора С1. Транзистор Т2 будет находиться в открытом состоянии и через R4 будет протекать его ток коллектора. На плюсовой обкладке конденсатора С2, присоединенной к коллектору Т2, будет низкое напряжение и он заряжаться не будет. По мере заряда С1 базовый ток Т2 будет уменьшаться, а напряжение на коллекторе расти. В какой-то момент это напряжение станет таким, что потечет ток заряда конденсатора C2 и транзистор Т3 начнет открываться. С1 начнет разряжаться через транзистор Т3 и резистор R2. Падение напряжения на R2 надежно закроет Т2. В это время через открытый транзистор Т3 и резистор R1 будет течь ток и светодиод LED1 будет светиться. В дальнейшем циклы заряда-разряда конденсаторов будут повторяться попеременно.

Если посмотреть осциллограммы на коллекторах транзисторов, то они будут иметь вид прямоугольных импульсов.

Когда ширина (длительность) прямоугольных импульсов равна расстоянию между ними, тогда говорят, что сигнал имеет форму меандра. Снимая осциллограммы с коллекторов обоих транзисторов одновременно, можно заметить, что они всегда находятся в противофазе. Длительность импульсов и время между их повторениями напрямую зависят от произведений R2C2 и R3C1. Меняя соотношение произведений можно изменять длительность и частоту вспышек светодиода.

Для сборки схемы мигающего светодиода понадобятся паяльник, припой и флюс. В качестве флюса можно использовать канифоль или жидкий флюс для пайки, продающийся в магазинах. Перед сборкой конструкции необходимо тщательно зачистить и залудить выводы радиодеталей. Выводы транзисторов и светодиода нужно соединять в соответствии с их назначением. Также необходимо соблюдать полярность включения электролитических конденсаторов. Маркировка и назначение выводов транзисторов КТ315 показаны на фото.

Проще всего определить катод светодиода, рассматривая прибор на просвет. Катодом является электрод с большей площадью. Минусовой вывод «электролита» обычно помечен белой полосой на корпусе прибора.

В зависимости от задач, которые ставит перед собой радиолюбитель, схему мигалки можно собрать «навесу», соединяя выводы радиодеталей между собой с помощью отрезков тонкого провода. В этом случае может получиться конструкция наподобие той, что показана ниже на фото.

Собираем мигалку «на коленке»

Если нужно собрать мигалку для последующего применения, то монтаж можно выполнить на куске жесткого картона или изготовить печатную плату из текстолита.

Простая мигалка на светодиоде

Существуют более простые схемы мигалок на светодиоде. Одна из таких показана на следующем фото.

Читайте также:
Энергосберегающие лампы. Принцип работы, устройство и ремонт своими руками

Схема самой простой мигалки

Если внимательно присмотреться к этой светодиодной мигалке, то можно увидеть, что транзистор в схеме мигалки включен «неправильно». Во-первых, неправильно подключены эмиттер и коллектор. Во-вторых, база «висит в воздухе». Однако схема светодиодной мигалки вполне рабочая. Дело в том, что в ней КТ315 работает как динистор. При достижении на нем порогового значения обратного напряжения происходит пробой полупроводниковых структур и транзистор открывается. Нарастание напряжения на транзисторе происходит по мере зарядки конденсатора. После открывания транзистора конденсатор разряжается на светодиод. Так как в схеме мигалки на светодиодах используется нестандартное включение транзистора, она может потребовать подбора резистора или конденсатора при наладке.

После того, как сделаете своими руками простую мигалку, можете переходить к более сложным мигающим устройствам, например к созданию цветомузыки на светодиодах.

Мигающий светодиод на одной батарейке

Большинство светодиодов работают при напряжениях свыше 1.5 вольт. Поэтому их нельзя простым способом зажечь от одной пальчиковой батарейки. Однако существуют схемы мигалок на светодиодах позволяющие преодолеть эту трудность. Одна из таких показана ниже.

В схеме мигалки на светодиодах имеется две цепочки заряда конденсаторов: R1C1R2 и R3C2R2. Время заряда конденсатора С1 гораздо больше времени заряда конденсатора С2. После заряда С1 открываются оба транзистора и конденсатор С2 оказывается последовательно соединен с батарейкой. Через транзистор Т2 суммарное напряжение батареи и конденсатора прикладывается к светодиоду. Светодиод загорается. После разряда конденсаторов С1 и С2 транзисторы закрываются и начинается новый цикл зарядки конденсаторов. Такая схема мигалки на светодиодах называется схемой с вольтодобавкой.

Мы рассмотрели несколько схем мигалок на светодиодах. Собирая эти и другие устройства можно не только научиться паять и читать электронные схемы. На выходе можно получить вполне работоспособные приборы полезные в быту. Дело ограничивается только фантазией создателя. Проявив смекалку, из светодиодной мигалки можно, например, сделать сигнализатор открытой дверцы холодильника или указатель поворотов велосипеда. Заставить мигать глазки мягкой игрушки.

Собрал ” на коленке” десульфататор

Имея в гараже несколько машин с АКБ неоднократно сталкивался с проблемой “просевшей” плотности электролита аккумулятора. Всегда конечно смотрю за АКБ и вовремя их обслуживаю. Но вот с АКБ на машине жены не всегда все гладко. Ездит она на своей машине мало да и машина не всегда попадает ко мне в руки и после того как в очередной раз у нее не завелась снял АКБ, привез в тёплый гараж, зарядил его, а плотность по банкам 1,14-1,16. Присутствовал белый налет на пластинах. Решил собрать себе десульфатор на основе старого советского трансформатора, двух реле и пары лампочек. Ранее уже имелся опыт сборки такого девайса, но сделанного немного по другой схеме. Трансформатор мне подогнал NikLover за что ему конечно же спасибо. По схеме

сделал из переменного тока постоянный, и дальше к выходам + и- собрал и подключил ту часть которая и “делает” десульфатацию:

Для нее использовал 2 реле: 1- реле поворотов ваз 2109, 2- 5 контактное реле такого типа:

и две лампочки, одну на 12 в 40 ватт, на схеме она обозначена красным, вторую 24в. 5 ватт, от нее и зависит частота работы реле поворотов. Лампы подбирал опытным путем. При подключении реле нужно учитывать, что на схеме они обозначеры так как если на них смотреть сверху, т.е. смотрите на реле сверку, а его контакты внизу реле, (смотрят в пол) это важно особенно для 3-х котатктоного реле поворотов 2109 Если подключить его не правильно оно сгорит. На выходе трансформатор выдавал постоянного тока 22 вольта в холостую без нагрузки, а под нагрузкой 15,1в 6А. Промерив во всех банках заряженного АКБ плотность

приступил к процессу

все конечно собрано на скорую руку и на соплях, но работало

лампочки мигали, создавая качели заряд-разряд, процесс пошел.) Во время десульфатации периодически проверял АКБ, несмотря на 15,1 вольта в цепи АКБ вообще не грелся в отапливаемом гараже, а плотность электролита понемногу росла )
Через 27 часов я добился желаемого результата

в трех банках АКБ ареометр при замере плотности электролита замер на отметке 1,27, в 4,5,6 1,25 1,26 1,26

и это при том что обычными способами зарядки я не мог добиться нужного восстановления плотности. Электролит остался таким же светлым, а белый налет на пластинах АКБ пропал Через 1,5 дня замерил напряжение АКБ

Читайте также:
Автономное освещение дачного туалета, сарая, подсобки за 5 минут!

Таким способом качелей заряд- разряд мне удалось восстановить около 4 автомобильных АКБ.
Единственный минус этого устройства- низкий ресурс 5 контактных реле, обычно одного реле хватает на 1-2 АКБ, потом его силовые контакты прогорают. Ну не рассчитаны эти реле на такое количество циклов вкл-выкл, поэтому и помирают.
Данный метод восстановления АКБ после его сульфатации не претендует на то что бы считаться самым лучшим и идеальным но за счет простоты исполнения думаю имеет право на существование.
К подобному способу никого не принуждаю и хочу предупредить, все что вы делаете и повторяете — вы делаете на вой страх и риск, за последствия я ответственности не несу, так что если что будет не так извиняйте)))
Осталось теперь по нормальному собрать мой чудо аппарат, убрав лишние “сопли”, обкатку думаю он уже прошел. Соберу его “в кучу” и поставлю в шкафчик, пусть стоит до очередного раза
Тут пара фото собранного приборчика

Десульфатор или зарядка dedivan-а своими руками

Евросамоделки – только самые лучшие самоделки рунета! Как сделать самому, мастер-классы, фото, чертежи, инструкции, книги, видео.

  • Главная
  • Каталог самоделки
  • Дизайнерские идеи
  • Видео самоделки
  • Книги и журналы
  • Обратная связь
  • Лучшие самоделки
  • Самоделки для дачи
  • Самодельные приспособления
  • Автосамоделки, для гаража
  • Электронные самоделки
  • Самоделки для дома и быта
  • Альтернативная энергетика
  • Мебель своими руками
  • Строительство и ремонт
  • Самоделки для рыбалки
  • Поделки и рукоделие
  • Самоделки из материала
  • Самоделки для компьютера
  • Самодельные супергаджеты
  • Другие самоделки
  • Материалы партнеров

Десульфатор или зарядка dedivan-а своими руками

У нас задача – получить из аккумулятора – долгоиграющую химическую батарейку. (с) dedivan

С чего начать? Начну с транса.
Все по порядку – Берем колечко ферритовое К28х15х9.
Это самый ходовой размер. Сразу предупреждаю- китайские желтые колечки из БП не пойдут- это не феррит. Проницаемость может быть от 600 до 3000. Это потому что мы его не будем гонять по полной петле намагничивания, для экономии потерь в сердечнике. Поэтому у него запас есть.
Прежде всего делаем зазор. Алмазным отрезным кругом 0,4 мм толщиной получается
зазорчик около 0,5мм. Ну это у кого как руки дрожат.

Второе- мотаем обмотки. Первым делом- изоляция, для деда это святое- никогда не мотать на голое колечко. Лак на проводе поцарапается, напряжение у нас на витках до 500 вольт, пробьет когда -никогда , обычно в самый ответственный момент. Берем провод 0,8 – считаем по внутренней окружности должно убраться 60 витков виток к витку. Начинаем мотать- вот тут пальчики у деда сводит- нет уже былого натягу. Вот убралось лишь 56. Но у транса запас есть.
И дальше вторичная обмотка- витков должно быть в 10 раз меньше, всего 6, но мотаем в несколько проводов. Так легче мотать- провод мягче чем один толстый, и лучше связь обмотки с сердечником. Провод подбираем тоже из условия заполнения внутренней окружности колечка. Виток к витку в один слой. У меня вот 4 получилось. Их потом запаиваем впаралель уже на плате.

Ну а теперь .. подключаем этот транс в схему.
Ключик у нас- полевой транзистор на ток более одного ампера и напряжение более 400 вольт.
На вход подаем импульс 50мкс более +5 вольт. За это время ток в первичке нарастает до примерно 1 ампера. При размыкании ключа энергия магнитного поля ищет выход – и находит его через вторичную
обмотку и диод в аккумулятор. Напряжение во вторичке подскакивает до 20 вольт. Но ток во вторичке по всем трансформаторным правилам получается в 10 раз больше чем в первичке. При этом понятно что в первичке будет 200в, а с учетом выбросов на паразитных индуктивностях и до 400. Вот поэтому полевик надо ставить типа IRF 740,840 и т.п. Ну и ручками не трогать- Индуктивность она простая- ей все равно какое у тебя сопротивление тела- ток всегда 1 ампер обеспечит. Так что гребень может отлететь.
Схемы то практически нет- одни правила монтажа. Провода питания и земли разнесены потому что в проводах вторички гуляет сильный короткий импульс и даже на нескольких сантиметрах прямого провода большая эдс возникает. На АКБ тоже виден выброс напряжения- до 5 вольт в зависимости от убитости батареи. Поэтому везде ставим еще и фильтры, и для питания схемы, и нагрузки.

Работает схема так- 50 мкс накапливаем энергию, затем 5 мкс отдаем её обратно в АКБ,
и 500 мкс ждем чтобы АКБ переварила, чтобы усвоилось.
Можно и реже подавать импульсы. В практической схеме как раз это надо регулировать.
Если напряжение на АКБ нарастает, а мы не успеваем потребить всю энергию,
тут прыть и надо убавлять.

Читайте также:
Антенна - Bi-Quad W-LAN Wi-Fi 2,4 ГГц. Сделай сам

Это вот простой генератор импульсов для раскачки. Он дает 50 мкс импульс через 500 мкс.

50 мкс идет плюсом, после этого пауза 500 мкс.
50 мкс- ключ открыт- копим энергию.
В это время на вторичке минус- в акк ничего не идет.
И только после закрытия ключа возникает импульс эдс.
5 мкс- отдаем обратно.
И 500 мкс- ждем переваривания.
Ну или 495 если уж быть скурпулезным.

Вот макеточка с “Бединиевским ВД” работает на убитом Боше.
Хозяин думал что мол раз БОШ, так и смотреть за ним не надо.
Ан нет, выкипел, две баночки коротнули. Добавил дистилированной водички – в двух банках плотность – ноль четыре нормальная(по минимуму.).
Напряжение было в начале 7,90 вольт, через сутки работы 8,68 вольт.

Но аккумулятор не всякий пойдет. Есть и такие гаражные умельцы- коротнула банка, а ставят на зарядку на неделю, авось поможет. В них уже одна труха.
Или кислоту зальют абы какую, или вообще щелочь “для десульфатации”.
Это проще всего отбирать именно по плотности электролита.

doniga:
Собрал года 2 – 3 тому назад. Генерирует импульсы более 60А. Запитана от адаптера 220/12В, 2А. Заряжает все от мизинчиков до автоаккумуляторов. Без контроля “мелкий подопытный” нагреватся и портится, может взорваться. Возможное применени десульфатация автоаккумулятора, ввиду малой мощности требуется не менее 3-х суток. Во вложении доработанная мной схема в формате spl7 и плата в lay:

Десульфатор или зарядка dedivan-а своими руками

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Десульфатор для автомобильного аккумулятора

    Любой автолюбитель сталкивался с явлением, когда аккумулятор пролежав некоторое время без дела перестает отдавать свою номинальную емкость, крутит стартер пол секунды, затем задыхается, но напряжение на нем нормальное – 12 вольт.

    С этим может столкнуться каждый, но почему это происходит. Автомобильный аккумулятор состоит из свинцовых пластин, находящихся в растворе электролита – в данном случае электролитом является серная кислота.

    Процесс заряда и разряда аккумулятора ничто иное как окислительно восстановительный процесс, протекает химическая реакция, в ходе которой свинцовая пластина вступает в реакцию с оксидами на соседней пластине. В ходе данной реакции образуются сульфаты, которыми со временем обрастают пластины. Сульфаты препятствуют протеканию тока, так, как являются плохим проводником и со временем аккумулятор теряет емкость и не способен отдавать большой ток для работы стартера.

    Если ваш аккумулятор заряжается и разряжается быстрее, чем раньше, не имея при том механических повреждений, скорее всего он вышел из строя именно из-за сульфатации пластин.

    Предлагаемое устройство (десульфатор) создает короткие импульсы высокой амплитуды и частоты. Импульс десульфатации длиться определенное время, затем простой, затем снова импульс. Такие ударные процессы могут разрушить слой сульфата, и в теории это возможно, на практике не все аккумуляторы удается восстановить из-за конструктивных особенностей последних, но судя по статистике около 85% старых аккумуляторов подлежат восстановлению, естественно если причиной неработоспособности является сульфатация, а не обрыв свинцовых пластин или иное механическое повреждение.

    Как пользоваться устройством?

    Данный вариант является зарядно-десульфатирующим устройством, обычный десульфатор питается от аккумулятора, который он десульфатирует и постепенно разряжает его, в этом же случае устройство заряжает аккумулятор короткими всплесками высокого напряжения высокой частоты.

    Данную схему можно использовать и для зарядки низковольтных свинцовых аккумуляторов с номинальным напряжением в 4-6 вольт, такие ставят в китайские фонарики, в детские электрокары и так далее.

    Читайте также:
    Интересный медицинский аппарат или как я лечил аллергию. Эффект диагностики или учение о противоположности

    Схема изначально создана для зарядки аккумуляторов малой емкости, но её можно использовать и для десульфатации автомобильных аккумуляторов. Перед тем, как начать процесс заряда с десульфатацией аккумулятор нужно слегка подзарядить.

    Для начала нужно найти любой источник питания с напряжением от 8 до 12 Вольт и подключить его на вход десульфатора, но не напрямую, а через лампу накаливания 12 Вольт с мощностью в 21 ватт, чтобы не превысить ток заряда, в конце об этом более подробно поговорим. К выходу прибора подключается аккумулятор, который нужно восстановить. Так, как прибор работает в звуковом диапазоне вы скорее всего услышите слабый свист, силовые компоненты схемы слегка должны нагреваться.

    Как работает схема?

    Напряженние с зарядного устройство через предохранитель и диод поступает на схему десульфатора. Для маломощной части схемы питание подается через токоограничивающий резистор, затем сглаживается небольшим электролитическим конденсатором.

    На микросхеме NE555 собран генератор прямоугольных импульсов, частота этих импульсов около 1кГц. Коэффициент заполнения около 90%. Микросхема CD4049 инвертирует и усиливает этот сигнал, превращая его в импульсы с заполнения около 10 %. С выхода инверторов импульсы поступают на затвор полевого транзистора VT1. Открываясь, он замыкает дроссель на массу питания, в дросселе накапливается энергиея, когда транзистор закрываетсят, цепь разрывается, за счет явление самоиндукции, которое свойственно индуктивным нагрузкам, дроссель отдает накопленную энергию. Это кратковременный всплеск напряжения с высокой амплитудой, притом напряжение самоиндукции в разы выше напряжения питания. Этот всплеск напряжения выпрямляется и подается на аккумулятор.
    Процесс происходит больше тысячи раз в секунду, то есть на аккумулятор подаются кратковременные импульсы высокого напряжения с высокой частотой, именно это и разрушает сульфатную пленку.

    В схеме задействован предохранитель и еще один выпрямительный диод. Предохранитель защитит десульфатор при случайных коротких замыканиях на выходе, а диод выполняет несколько функций – во первых защищает схему если вы случайно ее подключите к зарядному устройству неправильно и во вторых защищает зарядное устройство от возможных импульсных помех и всплесков напряжения, которые образуются на плате десульфатора.

    О компонентах

    Полевой транзистор IRF3205, или любые другие N-канальные с напряжением от 60 до 200 вольт и током от 30 Ампер, транзистор советую установить на небольшой радиатор.

    Дроссель имеет индуктивность около 200 микрогенри, намотан на кольце из порошкового железа, такие можно найти в компьютерных бп. Обмотка намотана проводом 1мм, количество витков 60, в моем случае провода не хватило и индуктивность получилась слегка меньше, но устройство работает хорошо.

    Размеры кольца особо не критичны, главное соблюдать индуктивность и мотать обмотку проводом 1-1,2мм.

    Конденсатор – на 100-220 мкФ очень желательно взять с низким внутренним сопротивлением, так, как схема генератора фактически питается от данного конденсатора, а значит он постоянно будет накапливать и отдавать энергию, даже слегка греется.

    Оба диода нужно взять с током в 5-10 Ампер, можно обычные, но желательно взять импульсные диоды.

    На самом зарядном нужно выставить ток не более двух ампер, иначе сгорит предохранитель на плате десульфатора. Кто -то скажет – 2 ампера зарядного тока это мало, да согласен, но не забываем, что у нас в большей мере не зарядка, а десульфатация.

    В холостую прибор потребляет от источника питания ток всего в 100мА. Его можно подключить к любому зарядному устройству с напряжением 12-15 Вольт и ограничить ток на уровне 2-х ампер. Ограничение можно сделать мощным резистором или лампочкой накаливания соответствующей мощности подключенной в разрыв плюса питания.

    Можно использовать и более низковольтные блоки питания с напряжением 8-10 Вольт, так, как наша схема все равно повышает начальное питание до нескольких десятков вольт.

    Сколько должен длиться процесс десульфатации – автор данной схемы говорит, что в течении 2-х недель регулярной зарядки полностью можно восстановить старый аккумулятор.

    Как сделать десульфатацию аккумулятора: инструкция и схема изготовления ЗУ

    Автомобильные свинцово-кислотные аккумуляторы со временем теряют емкость. Это происходит по нескольким причинам, одной из которых является процесс сульфатации – нарастания на поверхности пластин слоя кристаллов сульфата свинца (PbSO4). В отличие от других факторов, приводящих к старению АКБ, сульфатация обратима. После ликвидации ее последствий восстановить емкость батареи вполне реально.

    Что такое сульфатация, причины и возможные последствия

    Во время заряда, разряда, а также холостого хода свинцово-кислотного аккумулятора в нем происходят химические реакции с участием активных веществ:

    • свинца (пластины);
    • оксида свинца (обмазка пластин);
    • электролита (серной кислоты).
    Читайте также:
    Столик с подсветкой для пайки

    В результате реакций при разряде происходит образование сульфата свинца (PbSO4) и воды. Плотность электролита при этом падает. Когда аккумулятор подключают к зарядному устройству, реакция протекает в обратном направлении – из сульфата свинца и воды получается свинец, его оксид и серная кислота. За счет ее образования плотность электролита повышается.

    В теории PbSO4 образуется во время разряда и полностью расходуется во время зарядки. На самом деле первая реакция протекает даже при разомкнутой внешней цепи за счет саморазряда, и количество выделяющегося сульфата свинца зависит от многих факторов (в том числе, от температуры, возраста АКБ и т.п.). Во время пополнения энергии полной компенсации не происходит, в итоге со временем происходит накопление кристаллов на поверхности пластин. Этот процесс можно замедлить грамотной эксплуатацией и своевременным обслуживанием батареи, а можно ускорить небрежным отношением к аккумулятору. Особенно усугубляет ситуацию частый (да и разовый) глубокий разряд.

    Сульфатация – явление однозначно вредное. Кристаллы PbSO4 покрывают часть площади пластин батареи, «маскируя» активную часть и исключая ее из реакций. Емкость батареи при этом падает.

    Явные признаки, что батарее нужна помощь

    Первым признаком образования налета является снижение емкости батареи. Подзаряжать ее приходится чаще, сам процесс пополнения энергии занимает меньше времени. При подозрении на сульфатацию, можно вывернуть пробки каждой банки и, подсвечивая фонарем, осмотреть пластины. Белесый нарост обнаруживается визуально.

    К необслуживаемым батареям (гелевым, кальциевым, AGM) такой способ неприменим – у них нет пробок и нет другой возможности осмотреть пластины без нарушения конструкции, поэтому последствия осаждения кристаллов не будут заметны, пока налет не начнет вылезать на клеммы. Поэтому о наличии слоя сульфатов можно лишь косвенно судить по потере емкости.

    Вопреки распространенному мифу, сульфатация происходит и в таких АКБ, потому что они по сути своей являются обычными свинцово-кислотными батареями, только имеют особую конструкцию, либо электролит в них загущен специальными присадками до состояния геля. Только этот процесс в них происходит медленнее (в том числе, за счет меньшей склонности к саморазряду), но не исключен полностью.

    Какие существуют способы десульфатации аккумулятора

    Самый очевидный способ удалить нарост сульфата свинца – очистить его механически. Но очевидный – не значит самый простой. Для удаления PbSO4 надо разобрать каждую банку, а конструкция современных батарей этого не допускает. Придется добираться до пластин, варварски распиливая корпус аккумулятора. Но самое сложное – повторная сборка. Надо соблюсти зазоры между положительными и отрицательными электродами, с одной стороны не допуская замыканий, с другой – выдерживая размеры для нормальной упаковки в корпус.

    Более щадящий метод – химический. Для этого подойдут вещества, вступающие в реакцию с сульфатом свинца. Самое доступный из подобных препаратов – «Трилон Б», имеющий сложную химическую формулу.

    Вещество надо растворить в химически инертной посуде (с металлом «Трилон Б» вступает в реакцию) в дистиллированной воде. Для приготовления препарата надо взять:

    • 1,2 литра воды;
    • полтора литра аптечного аммиака 10% (нашатырного спирта);
    • 60 грамм кристаллического порошка «Трилон Б».

    Если удастся раздобыть 25% раствор аммиака, то пропорции будут несколько другими:

    • 2,3 литра воды;
    • 600 мл аммиака;
    • 60 грамм «Трилона».

    Электролит из всех элементов надо слить и промыть банки дистиллированной водой. Потом внутрь каждого отсека залить приготовленный раствор.

    Все процедуры надо производить в соответствии с требованиями охраны труда – пользоваться защитными очками и резиновыми перчатками, а также спецодеждой.

    Раствор надо держать внутри банок не более часа, во время процедуры возможен разогрев состава, выделение газа и выплескивание горячего состава. По окончании процесса надо слить отработанный раствор, несколько раз промыть внутреннее пространство дистиллированной водой. Можно заливать электролит и пробовать заряжать АКБ.

    Эти способы можно применять для обслуживаемых аккумуляторов. Для АКБ без доступа к электролиту (AGM, гелевые и т.п.), надо применять электрохимические способы очистки (они подойдут и для обычных батарей).

    Описание десульфатации зарядным устройством

    Самым щадящими и безопасными являются электрохимические методы десульфатации, которые производятся посредством зарядника для АКБ. Распространены два подобных способа десульфатации. При первом электролит полностью сливается из банок батареи и заменяется дистиллированной водой. После этого начинается заряд малым током (в пределах 0,5 ампера).

    Эту процедуру можно выполнить простым зарядным устройством с возможностью ручной регулировки тока, но этот метод имеет несколько недостатков:

    • необходим постоянный контроль над процессом – чтобы ток не увеличился свыше 0,5 ампера;
    • процедура длится долго – до нескольких суток в зависимости от емкости АКБ.
    Читайте также:
    Крутое освещение комнаты светодиодной лентой

    Удобнее производить десульфатацию с помощью ЗУ, имеющего данную функцию. Здесь зарядка номинальным током чередуется с разрядкой небольшим током. Но такие зарядники стоят значительно дороже обычных.

    Как сделать десульфататор своими руками

    При наличии умелых рук и определенной квалификации можно сделать ЗУ с режимом десульфатации самостоятельно.

    Простой десульфатор

    Если у пользователя уже есть зарядное устройство, для десульфатации можно собрать отдельный прибор. Он получится несложным.

    Основой схемы служит понижающий трансформатор с однополупериодным выпрямителем на параллельно включенных диодах VD1, VD2. Во время положительной полуволны сетевого напряжения напряжение на базе транзистора VT1 растет. При достижении определенного порога он открывается и через аккумулятор, подключенный к зажимам X1 и X2, начинает течь зарядный ток. Его величина определяется порогом открывания транзистора VT1 и регулируется потенциометром R2. При отрицательном полупериоде транзистор закрыт, и аккумулятор разряжается через резистор R3 (ток задается номиналом резистора). Таким способом чередуется заряд аккумулятора номинальным током и разряд пониженным.

    В приборе можно применить трансформатор ТС-180, который использовался в ламповых телевизорах. Все вторичные обмотки удаляются, вместо них проводом толщиной не менее 2 мм наматываются две вторичные обмотки по 40 витков на разных стержнях сердечника и соединяются последовательно. Так обеспечится ток не менее 10 А.

    Транзистор можно использовать любой структуры n-p-n с достаточным током коллектора. Его надо установить на радиаторе. Для контроля тока и напряжения надо установить стрелочные или цифровые приборы:

    • ампермер на ток до 12..15 А;
    • вольтметр на напряжение 16..20 вольт.

    Резистор должен быть мощностью не менее 10 ватт. Можно применить резистор типа ПЭВ, а можно составить его из нескольких параллельно включенных двухваттников (не менее 5).

    Собрать прибор можно навесным монтажом, а можно разработать печатную плату, но это не очень целесообразно. Корпус можно сделать любой или подобрать готовый. Его конструкция не должна затруднять воздухообмен с окружающей средой.

    Зарядно-десульфатирующий автомат

    Можно производить десульфатацию аккумулятора зарядным устройством – в таком приборе совмещаются две функции. Такая схема несколько сложнее, но аппарат «2 в 1» универсален, а в некоторых случаях более удобен.

    Основой прибора служит тот же понижающий трансформатор с однополупериодным выпрямителем на диоде 1VD1. Окончание заряда контролируется узлом на микросхеме 1DA1 (554СА3), которая представляет собой недорогой и распространенный компаратор. Напряжение аккумулятора сравнивается с образцовым напряжением, которое задает стабилитрон 1VD11. Уровень срабатывания компаратора определяется положением движка подстроечного резистора R16. Когда компаратор срабатывает, на его выходе 9 появляется низкий уровень, зажигается светодиод оптрона U1, на управляющем электроде симистора 1VD1 исчезает управляющее напряжение. При ближайшем переходе сетевого напряжения через ноль симистор отключается. Заряд закончен. Прибор переводится в ручной режим замыканием тумблера SA2, при этом симистор открыт всегда.

    Режим десульфатации включается тумблером 1SA1 (функция может быть активна только при включении устройства в сеть, за этим следит своими контактами реле К1). Во время отрицательно полуволны аккумулятор разряжается через резистор 1R11, его номинал определяет ток разряда.

    Советы эксплуатации и сборке

    Требования к силовому трансформатору аналогичны требованиям предыдущей схемы. Диод 1VD1, тиристор 1VS2 и симистор 1VS1 надо установить на радиаторы. Мощный резистор 1R11 может быть любым (одиночным или составным), а 1R1 – обязательно проволочным. Не помешает установка в корпусе вентилятора. Запитать его можно от линии +12 вольт. Резистор 1R6 устанавливается на передней стенке корпуса, там же надо смонтировать вольтметр и амперметр.

    Для наглядности рекомендуем серию тематических видеороликов.

    Десульфатация может существенно продлить жизнь аккумуляторной батареи. Провести ее можно в домашних условиях, а самым безопасным и эффективным методом является электрохимический. При наличии квалификации прибор для выполнения такой процедуры можно изготовить самостоятельно.

    Десульфататор своими руками

    В статье описан прибор на базе микроконтроллера ATMega8, с помощью которого была сделана попытка восстановления необслуживаемого кислотного аккумулятора.

    Суть восстановления состоит в подаче зарядного тока порядка от 2 до 5 А в течении определённого времени Ti от нескольких секунд до десятков минут и последующим подключением аккумулятора к нагрузке от нескольких секунд до десятков минут с дальнейшим повторением цикла до 8-и часов.

    В процессе восстановления ёмкость аккумулятора растёт, напряжение увеличивается и при достижении 14,3 В происходит автоматическое отключение аккумулятора от зарядного устройства и нагрузки.

    Читайте также:
    Простой индукционный нагреватель своими руками

    Базовый прибор

    Устройство выполнено в корпусе простейшего зарядного устройства 80-х годов прошлого века фирмы BOSCH с полным использованием указанной схемы состоящей из трансформатора, 2-х мощных диодов и амперметра (Рис.1)

    Трансформатор выдаёт во вторичную обмотку

    17В, D1 и D2 выпрямляют переменное напряжение 50 Гц в постоянное пульсирующее с частотой 100 Гц заряжая аккумулятор током до 5А с постепенным его снижением по мере зарядки. Преимуществом данной схемы явлется его несомненная простота и надёжность, недостатком невозможность отключения при полной зарядке.
    При длительной эксплуатации аккумулятора(АКБ), особенно в неблагоприятных условиях (недозаряд при редкой эксплуатации автомобиля), происходит снижение ёмкости АКБ при которой автомобиль не может быть заведён. Это происходит за счёт сульфатации пластин АКБ. В данной статье анализируется возможность устранения сульфатации и как следствие – более длительный срок эксплуатации АКБ.
    В виду ограниченности места в корпусе зарядного устройства (ЗУ) схема десульфатора разделена на две части:

    • Платы реле и питания.
    • Платы управления.

    Обе платы связаны шлейфом из проводников МГТФ оканчивающих разъёмом микроUSB.

    Схема платы реле и питания

    Связь с внешними устройствами ЗУ, АКБ и нагрузкой Л1 осуществляется через 11-контактый разъём РЗ. Нагрузка представляет из себя автомобильную лампу 12В 5А. Реле состоит из 4 групп контактов НЗК, НОК и ПРК, соединённых параллельно, условно показан один контакт.

    Положительный полюс АКБ всегда “дежурит” на ПРК. При отсутствии питания от ЗУ +АКБ соединён с нагрузкой через НЗК и нагрузкой Л1, второй конец которой находится на стоке мощного полевого транзистора n-типа Т4 CEP83A3(100А 30В), управляемого сигналом U_NAGR.

    Цепочка резисторов R1=3,9кОм и R2=1,6кОм представляет из себя делитель для измерения напряжения АКБ аналогово-цифровым преобразователем(АЦП) микроконтроллера(МК) .

    При подаче питания

    220В на ЗУ, последний запитывает мощный транзисторный ключ на Т1 и Т2 пульсирующим положительным напряжением. Открытие ключа осуществляется положительным импульсом U_REL формируемым МК. Одновременно С1 интегрирует пульсирующую последовательность в 100Гц в постоянное напряжение на коллекторе Т3.

    Схема на Т3, D3,R6,R7 представляет стабилизатор на 5 В для питания МК и его обвязки.
    При отсутствии положительных уровней напряжения U_REL и U_NAGR от МК Т4 и Т2 закрыты, +5В запитывает МК через микроUSB.

    При подаче управляющего сигнала U_REL включается реле Rel1, ПРК замыкается с НОК подключая ЗУ к АКБ на время Ti, начинается процесс заряда АКБ. По окончании ti снимается U_REL=0, реле размыкается, одновременно формируется U_NAGR=1 и АКБ подключается к нарузке Л1, идёт процесс разряда на время Т-ti, где Т-период цикла.

    По окончании времени разряда АКБ процесс повторяется до тех пор пока напряжение на АКБ не достигнет 14,3В, после чего управляющие сигналы снимаются, отключается нагрузка, обесточивается реле, на индикатор выводится уровень напряжения АКБ. В этом состоянии АКБ может находиться длительное время, так как несколько миллиампер, обеспечивающих питание схемы, неспособны сколь нибудь заметно разрядить АКБ. Десульфатация не ограничивается одним сеансом, и в продолжении недели или двух может повторяться несколько раз с возможной установки других времён заряда/разряда.

    Схема платы управления

    Для задания режима десульфатации служат кнопки:

    • RST – системный сброс, для повторного введения данных
    • FT – фиксация периода цикла в секундах
    • Fi – фиксация длительности импульса заряда секундах
    • FU – фиксация уровня напряжения отсечки заряда в вольтах. При этом на 4-х разрядном 7-и сегментом индикаторе IND отображается напряжение АКБ до 2-х десятичных знаков после запятой.

    Фиксация указанных параметров происходит по алгоритму:

    1. Включаем питание +5В переключателем V1, на индикаторе появляется напряжение на АКБ с двумя значащими цифрами после запятой.

    2. Нажимаем любую кнопка из множества FT, Fi, FU на индикаторе высвечивается лексема ПЕР, что говорит об предстоящей операции ввода и фиксации периода десульфатации.

    3. Вторичное нажатие и удержание кнопки FT указывает значение периода на индикаторе в секундах. Вращением ручки потенциометра R1 устанавливаем требуемое время, например 10 секунд. Отпусканием кнопки FT фиксируем требуемое время периода, при этом на индикаторе появляется лексема ИМП(IПС) что говорит о следующей процедуре – программирование длительности импульса заряда АКБ.

    4. Нажатие и удержание кнопки Fi указывает значение импульса заряда на индикаторе в секундах. Вращением ручки потенциометра R1 устанавливаем требуемое время, например 7 секунд. Отпусканием кнопки Fi фиксируем требуемое время импульса, при этом на индикаторе появляется лексема УСТ(UC) что говорит о следующей процедуре – программирование напряжения уставки отключения Ак от заряда/разряда.

    Читайте также:
    Способ соединения медного и алюминиевого проводов

    5. Нажатие и удержание кнопки FU указывает значение уставки отключения от режима десульфатации в вольтах с точностью до 2-х знаков после запятой. Вращением ручки потенциометра R1 устанавливаем требуемый вольтаж, например 14,32 В . Отпусканием кнопки FU фиксируем требуемый вольтаж, при этом начинается режим десульфатации фиксируемый зажиганием светодиодом D1(включением реле).

    6. В процессе заряда индикатор отображает время заряда в секундах, например от 1с до 10с, при разряде на индикатор выводится напряжение АКБ.

    7. При достижении на напряжения Uк=Uуст в режиме разряда АКБ отключатся от десульфатации и на индикатор выводится напряжение Ак до полного отключения прибора.

    8. Поскольку тренировка аккумулятора может доходить до 10-и и более суток вводится дополнительный режим – разряд АКБ до 10 В и последующей тренировкой. Это чтобы не ходить в гараж каждый день и перезапускать программу.

    На Рис.4 – внешний вид десульфататора:

    На Рис.5- аксессуары прибора, идёт процесс зарядки при отключённой нагрузке (лампа Л1 не горит, напряжение на аккумуляторе 10,81 В)

    На Рис.6 печатная плата блока реле и питания, на Рис.7 печатная плата блока управления.

    Выводы

    Критерием восстановления Ак явилась его проверка на машине. Мой АКБ относился к классу неразборных, одна банка не работала и при полном заряде напряжение АКБ не превышало 11 В. Но машина завелась, что говорило о восстановлении оставшихся 5-и банок.

    Рис.1,2,3 выполнены в редакторе Splan версии 7.0. Фото Рис. 4,5 выполнено фотоаппаратом Canon, вставлено в Word программой Paint. Проект плат выполнен в среде Sprint-LayOut версии 5.0. Подготовка информации для фрезы выполнен с помощью программы CNC_Converter_v1.72.exe. Фрезерование выполнено на станке СНС-3 Луганского машиностроительного завода.

    Программа

    Выполнена и отлажена в оболочке CVAVR версии 3.12. Прошивка hex-файла с помощью STK-500 в среде AVR Studio 4.

    /*******************************************************
    This program was created by the
    Date : 07.05.2021
    Chip type : ATmega8A
    Program type : Application
    AVR Core Clock frequency: 8,000000 MHz
    Memory model : Small
    External RAM size : 0
    Data Stack size : 256
    *******************************************************/

    #include
    #include
    #include

    #define t0 delay_ms(5);//был 1 длительность свечения сегмента
    #define t1 delay_ms(2);//был 5 длительность отсутствия свечения сегмента
    #define A0 PORTB.0=1;
    #define A1 PORTB.6=1;
    #define A2 PORTB.7=1;
    #define A3 PORTB.1=1;
    #define cl PORTB=4;PORTD=0xFF;
    #define ADC_VREF_TYPE ((0 ti) && (sec = Ustawka) //откл.нагрузки
    for(i=0;i T) sec=0;
    >
    while(!pon)
    <
    //отключаем ЗУ,включение нагрузки, контроль напряжения на аккумуляторе
    clear_rele
    nagr1;
    sum=0;
    for(i=0;i
    ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ:

    У каждого, наверно завалялся где-нибудь старый не нужный, но годный сотовый телефон.

    А ведь из него можно без особых переделок сделать, например: дополнительную надежную сигнализацию для автомобиля в гараже.

    Давайте подробнее рассмотрим, как это можно сделать:

    Схема электропроводки и поиск неисправностей

    Одну из важных ролей в автомобиле играет электропроводка. От неё зависит правильна работа основных устройств и систем, а также автомобиля в целом. Сегодня рассмотрим принципиальные схемы электропроводки семейства ВАЗ-2110.

    Схема прерывистой электронной сирены приведена на рис.На транзисторах VT1 и VT2 собран генератор по схеме несимметричного мультивибратора. Простота схемы генератора объясняется использованием транзисторов разной структуры, что позволило обойтись без многих деталей, необходимых для постройки мультивибратора на транзисторах одинаковой структуры. Подробнее…

    Десульфатация аккумулятора

    Основной причиной старения аккумулятора считают образование нерастворимой корки сульфата свинца на зарядных пластинах. Отложения уменьшают концентрацию ионов в электролите, увеличивают внутреннее сопротивление приему заряда. Когда говорят «аккумулятор сел» виновником является отложение сернокислого свинца в банках. Удалить налет – провести десульфатацию батареи, восстановить работоспособность.

    Десульфатация кислотного аккумулятора

    Когда аккумулятор отдает энергию, он разряжается за счет протекания химической реакции:

    Pb +2H2SO4 +2PbO2 -> 2PbSO4 +2H2O

    Pb – это свинцовая пластина

    PbO2 – активная замазка на угольной решетке

    PbSO4 – мелкие кристаллы, которые разрастаясь, закрывают пластину

    Но когда аккумулятор заряжается от генератора или сети реакция идет в обратную сторону, то есть сернокислый свинец распадается на ионы свинца и кислотный остаток. И все было бы хорошо, но часть кристаллов, при хроническом недозаряде и глубоком разряде аккумулятора, разрастается и не участвует в реакции. Вещество нерастворимой серо-желтой пленкой покрывает пластину, забивает поры, не пропускает заряженные ионы к токопроводящим пластинам. Этим объясняется быстрая подзарядка аккумулятора и моментальная разрядка – нет емкости.

    Возвратить емкость аккумулятору можно, если не осыпалась замазка, и не разрушились пластины – то есть электролит в банках светлый, без взвеси. Цель десульфатации АКБ – очистить механически, химически или электротоком пластины, восстановить или заменить электролит. Схемы снятия осадка отработаны годами. Есть методы десульфатации АКБ, применяемые в сервисных центрах и доступные в домашних условиях.

    Читайте также:
    Антенна - Bi-Quad W-LAN Wi-Fi 2,4 ГГц. Сделай сам

    Как сделать десульфатацию на автомобильный аккумулятор

    Естественный процесс старения аккумулятора в связи с потерей емкости, в результате осаждения трудно растворимых солей можно отложить своевременной десульфатацией стартового или тягового аккумулятора.

    Все методы можно классифицировать по видам:

    • Воздействие электрическим зарядом – постоянным током малой величины, импульсным током, переполюсовкой.
    • Химические методы с использованием разрушителей осадка с последующей заменой электролита. Или растворение в дистиллированной воде осадка малым током зарядки
    • Механические – когда вынутые из банок пластины восстанавливают механической обработкой.

    В целях профилактики периодически в электролит добавляют присадки, препятствующие появлению сульфатного камня, но они разрушают пластины, сокращая срок службы аккумулятора.

    Схема для десульфатации автомобильного аккумулятора

    Из химических методов десульфатации аккумуляторных батарей чаще всего применяют сложный состав трилона Б и аммиака. Эти вещества доступны, но использовать их следует с соответствие инструкции и на крепких аккумуляторах. Трилон Б, натриевая соль этилендиаминтетрауксусной кислоты, растворимая в воде, натрий замещает в соли ион свинца и осадок растворяется. Но растворяется и активная замазка.

    Порядок десульфатизации аккумулятора химическим способом:

    • Готовится раствор – на 3 л взять 60 г трилона Б, 622 мл NH4OH 25%, 2340 мл дистиллированной воды. Можно взять 10% аммиачный раствор1560 мл, воды 1140 мл и 60 г трилона Б.
    • Сливается электролит из АКБ в подходящую емкость.
    • Сразу непросохшие банки залить подготовленным составом, на оставить в АКБ не более чем на 60 минут.
    • Слить содержимое и промыть банки 3-4 раза дистиллированной водой.
    • Залить свежий электролит нужной плотности и выполнить зарядку по полному циклу.

    Способ нужно использовать с осторожностью. Если десульфатацию автомобильного аккумулятора проводят для удаления небольшого количества осадка, время воздействия сокращают до 30-40 минут. Трилону Б все равно что растворять – вредный осадок или активную массу. В момент реакции идет разогрев и кипение жидкости. Работать нужно на открытом воздухе, использовать защитные средства.

    Зарядное устройство с десульфатацией для автомобильного аккумулятора

    В промышленных условиях, на автобазах, где зарядку аккумуляторов ведут обученные работники, десульфатацию АКБ проводят специальным зарядным устройством для десульфатации. Для снятия осадка с сильно забитого аккумулятора используют реверсивные импульсные токи.

    Реверсивный ток – переменный, с различной амплитудой и полярностью, повторяющихся циклично. Импульсная десульфатация зарядом и разрядом действует на аккумулятор мягко, температура электролита не поднимается, выделения газа не происходит.

    Для создания реверсивных токов используется специальное устройство, генератор реверсивного тока, стоимость которого примерно равна двум аккумуляторам. Как произвести десульфатацию аккумулятора, пользуясь генератором реверсивного тока?

    Генератор используют при среднем сульфатировании пластин с подачей тока 0,5 – 2,0 А в течение 20-50 часов. Процесс окончен, когда в течение 2 часов напряжение и плотность электролита остаются неизменными.

    Сильно забитый аккумулятор чистят с применением устройства для десульфатизации дистиллированной водой в несколько этапов. Для этого напряжение на батарее нужно снизить до 10,8 В, удалить электролит, залить в банки дистиллированной водой.

    Вести десульфатацию АКБ малым током, чтобы напряжение было до 2,3 В. Постепенно осадок растворяется в воде, электролит приобретает плотность около 1,11 г/см3. Раствор заменить свежей дистиллированной водой, и продолжать процесс до плотности 1,12 г/см3. Силу тока теперь установить 1 А и наблюдать за ростом напряжения, до тех пор, пока показатель не стабилизируется.

    По прошествии первого этапа десульфатации АКБ, поднимают ток до 20 % от разрядного, заряжают батарею 2 часа, разряжают и так до постоянной плотности и напряжения 3-5 раз.

    Доводят кислоту до плотности 1,21-1,22 г/см3, заряжают аккумулятор полностью и спустя 3 часа корректируют плотность, пользуясь таблицей. Метод трудоемкий, но десульфатация пластин получается полной. Аккумулятору возвращается вторая молодость.

    Десульфатация аккумулятора зарядным устройством

    Можно обойтись более дешевым способом десульфатизации обычным зарядным устройством. Но непременным условием является возможность регулировать ток и напряжение. Если осадок пока занимает меньше половины пластин, применяется следующая схема десульфатизации аккумулятора:

    • Довести уровень электролита до нормального уровня дистиллированной водой.
    • Подключить ЗУ и установить напряжение 14 В, силу тока 1 А. Заряжать 8 часов. Замеры должны показать, что плотность электролита увеличилась, напряжение поднялось до 10 В. Если показатели ниже – аккумулятор не восстановить.
    • Сутки АКБ отдыхает, отключенное от ЗУ.
    • Подключить с напряжением 14 в и током 2-2,5 А на 8 часов. Напряжение должно стать 12,7-12,8 В. Электролит в банках плотностью 1Ю13 г/см3.
    • Разрядить аккумулятор до 9 В, лампой дальнего света за 6-8 часов.
    • Повторять разряд-заряд несколько раз, пока плотность электролита не станет 1,27 -1,28 г/см3. В период циклов идет процесс десульфатации, растворяется камень, кислотный остаток SO4 укрепляет электролит.
    Читайте также:
    Интересный медицинский аппарат или как я лечил аллергию. Эффект диагностики или учение о противоположности

    В результате емкость свинцового кислотного аккумулятора восстановится на 80-90 %. Но так нельзя провести десульфатацию кальциевого или гелевого аккумулятора.

    Чаще всего для десульфатации зарядным устройством используют установку «Вымпел». Она доступна по цене, и имеет необходимую регулировку. К ней можно подключить приставку в виде моргалки или другое электронное устройство для снятия свинцового камня.

    В необслуживаемых аккумуляторах десульфатация эффективна только на начальной стадии отложения камня. Ведется она с применением импульсного зарядного устройства. Но надо знать, что камень в кальциевом аккумуляторе содержит гипс, который не разрушается под воздействием импульсных токов. Поэтому необслуживаемые аккумуляторы после 3 глубоких разрядов не подлежат восстановлению.

    Устройство для десульфатации автомобильных аккумуляторов

    Хорошо ведется десульфатация на пластинах автомобильных аккумулятора под действием токов переменного направления с изменением полярности в высокой частоте. Промышленность предлагает приборы и приставки к зарядке для десульфатации аккумулятора.

    Зарядное устройство для аккумуляторов Кедр Авто-10, с режимом десульфатации относится к автоматическим зарядникам. Он обеспечивает зарядку с тока в % А от емкости АКБ, быстрый режим током 5 А и циклический – десульфатацию. Компактный зарядник доступен по цене.

    Зарядные десульфатирующие устройства выбирают для конкретного типа аккумуляторов. Лучшими для обслуживания одного аккумулятора считают изделия:

    • устройство одноканальное, предназначенное для автомобильных батарей;
    • лучше взять устройство с ручной регулировкой зарядного тока;
    • изучить возможности защиты, блокировки и допустимые температуры;
    • знать параметры своего аккумулятора, подбирать подходящее устройство.

    По техническим показателям для автомобилиста подойдет прибор с регулируемым напряжением 0-36 В, с разными способами десульфатации:

    • щадящий – малый ток, напряжение постоянное;
    • интенсивный – циклический импульсный, подающий ассиметричный ток;
    • циклический заряд со снижением зарядного напряжения.

    Совместимость с батареей вашей емкости – обязательное условие.

    Если вы приобрели десульфатирующую приставку, то она должна включаться между зарядным устройством и аккумулятором, и провода ее не должны быть тоньше других в схеме соединения. Зарядное должно поддерживать импульсный режим.

    Десульфатация АКБ в домашних условиях

    Часто десульфатацию АКБ легковых авто проводят своими руками, руководствуясь предоставленными на различных ресурсах схемами. Многие из них основаны на использовании обычного зарядного устройства, но требуют много внимания. В среднем ручная сульфатация малыми токами и в несколько циклов занимает больше 2-х недель.

    Подключение к зарядному устройству приставки ускорит режим десульфатации АКБ. Примером приставки служит импульсный преобразователь, называемый моргалкой, так как светодиоды сигнализируют от прохождении переменного тока. Устройство можно собрать своими руками.

    Перед вами схема зарядного устройства для сульфатации автомобильного аккумулятора, называемая «моргалка».

    Принцип «моргалки» – прохождение 10 % тока от емкости АКБ, напряжение 13,1 – 13,4 В. Схема представляет разрядку лампочками на 12 в и реле, включающее зарядку по окончании разрядки. Получается моргание с пульсацией 4,3 секунды на разряд током 1 А и 3 секунды на заряд током 5 А. Импульсы тока сначала разрыхляют монолитную пленку на пластине, потом растворяют маленькие кристаллы.

    Знаем, что необслуживаемые аккумуляторы плохо поддаются десульфатации. Но если батарея новая, отслужила не более 2 лет, а уровень электролита в банках низок, можно попробовать восстановить емкость. Сначала нужно добавить в банки дистиллированной воды и заклеить отверстия эпоксидным клеем. Потом попробовать провести зарядку импульсным током. В режиме десульфатации АКБ, одновременно с корочкой сульфатированного свинца будет разрушаться активная замазка. Емкость восстановится ненамного и ненадолго.

    Важно знать!

    Электролит разъедает тело и натуральные хлопковые волокна также как концентрированная серная кислота. Выделяющиеся через открытые пробки АКБ газы вредны и взрывоопасны. Поэтому место, где проводятся опасные работы должно быть проветриваемым и недоступным для детей и животных. Бутыли с электролитом не должны находиться в местах общей доступности. Не забывайте надеть защитные очки, резиновые перчатки и пользоваться резиновым фартуком.

    Видео

    Возможно, для вас будет полезным посмотреть предоставленное видео по десульфатации аккумулятора.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: