Делаем освещение в квартире по датчику движения

Схема подключения датчика движения для освещения

Содержание

  1. Что вам понадобится
  2. Процесс установки датчика движения
  3. Полезные материалы

1. Что вам понадобится

  • Датчик движения
  • Электропровод
  • Длинногубцы или тонкогубцы
  • Отвертка
  • Инструмент для снятия изоляции
  • Дрель
  • Дюбель-гвозди

2. Процесс установки датчика движения

Определяемся с местом установки

Корректная работа датчика движения зависит не только от правильной схемы подключения, но и от места его установки. В зависимости от угла охвата устройства монтируйте его в таком месте, чтобы в зону действия входили возможные места появления человека. Если вход в помещение один, датчик устанавливают напротив входа. Если входа два, датчик размещают на потолке. В этом случае угол охвата прибора должен составлять 360°. Кроме того, следует соблюсти еще несколько важных правил:

  • в зоне действия устройства не должно быть приборов, которые имеют электромагнитное излучение (иначе помехи могут нарушить его работу);
  • на датчик не должен быть направлен поток воздуха от кондиционера или вентилятора;
  • устройство должно находиться как можно дальше от отопительных приборов;
  • на корпус не должен падать прямой свет (если датчик устанавливается в помещении с окном, важно настроить его включение только в темное время суток).

Выполнение перечисленных требований поможет избежать ложных срабатываний или, напротив, исключит несрабатывание датчика, когда потребуется включить освещение.

Совет: если в вашем доме есть животные, и вы хотите избежать срабатывания датчика при их появлении в зоне действия, заранее выберите приемлемый для себя вариант. Либо вы будете регулировать чувствительность датчика, устанавливая минимальное значение для срабатывания, либо сразу купите модель с функцией игнорирования животных. Такие устройства не реагируют на движущиеся объекты весом менее 10 или 25 кг.

Подключаем датчик движения

Прежде чем рассматривать схему подключения датчика движения для освещения, необходимо его разобрать. Открутите с помощью отвертки заднюю панель корпуса – внутри вы увидите колодку для присоединения проводов. Стоит отметить, что процесс монтажа этого устройства чем-то схож с установкой выключателя. То есть выполняется электрическая цепь с последовательно включенным в нее светильником, а датчик замыкает или размыкает эту цепь, включая или выключая освещение. И в самом деле – в процессе нет ничего сложного. Во-первых, на колодке имеются обозначения для присоединения проводов: N – нулевой провод, L – фаза, L со стрелкой (или А) – клемма для соединения с осветительным прибором. Во-вторых, схему подключения датчика движения производитель показывает на корпусе устройства или в инструкции. Нужно лишь выбрать оптимальный способ установки. Мы опишем два наиболее распространенных.

Вариант 1: подключение через осветительный прибор. Это довольно простой и удобный способ, который не требует доступа к распределительной коробке. Отлично подходит для тех мест, где человек находится недолгое время: на крыльце, лестничной площадке, в кладовой и т.д. Устройство здесь работает следующим образом: свет включается при появлении человека в зоне действия, горит какое-то количество времени, пока есть движение, и выключается при отсутствии движения. Это очень удобно – человеку не нужно нажимать на выключатель, например, если заняты руки.

Читайте также:
Удлинитель из старого пылесоса своими руками

Пример схемы подключения датчика движения для освещения без выключателя

Как выполняется подключение. От клеммы L напрямую к фазе ведется провод. От клеммы N – нулевой провод, который идет также к осветительному прибору. От клеммы A провод идет к осветительному прибору

Вариант 2: подключение через выключатель. Этот способ чуть сложнее, но в ряде случаев считается более эффективным. К примеру, датчик движения устанавливается на кухне. Человек заходит в помещение – включается свет, человек садится и не двигается – через какое-то время свет выключается. Согласитесь, не очень комфортно. Именно для таких ситуаций, когда свет должен гореть без постоянного движения объекта, нужна дополнительная возможность управления освещением – установка трехпозиционного выключателя.

Пример схемы подключения датчика движения для освещения с выключателем

Как выполняется подключение. От клеммы N, как и в предыдущем случае, нулевой провод отходит в распределительную коробку к нулевому проводнику. Там идет разводка на осветительный прибор. От клеммы L фазный провод идет к трехпозиционному выключателю и подключается к клемме, которая отвечает за среднее положение клавиши. Именно в этом положении управление освещением будет осуществляться датчиком движения. От клеммы A идет третий провод, который соединяет датчик движения и осветительный прибор. В свою очередь от осветительного прибора на выключатель идет провод к клемме с верхним положением клавиши. В таком случае управление освещением осуществляется с помощью выключателя. Нижнее положение клавиши – это выключение света

Крепим датчик

После выполнения монтажа в соответствии со схемой подключения датчика движения следует собрать корпус прибора и закрепить его на стене или потолке. В выбранном месте просверлите отверстие (или два – в зависимости от способа крепления корпуса), вставьте туда дюбели и закрепите устройство с помощью саморезов. Если корпус поворотный, направьте его на предполагаемую зону действия. Готово – осталось только настроить и протестировать прибор.

Выполняем настройку

Стандартно у датчика движения есть три регулятора: освещенность, время и чувствительность. С их помощью прибор настраивают для корректного срабатывания практически под любые условия эксплуатации. Настройка большинства моделей идентична. Важно, что делается она при выключенном освещении. Регулятор чувствительности следует повернуть до упора по часовой стрелке, а регулятор времени – до упора против часовой стрелки. Для настройки на тестирование датчику может потребоваться около минуты. После этого выполните проверку: выходите и входите в помещение либо в зону действия датчика, если он установлен на улице. Датчик должен включать свет и выключать его. Важно, чтобы между тестами проходило более 5 секунд. После этого вы можете настраивать чувствительность и время срабатывания так, как вам нужно. Поворачивайте регуляторы и тестируйте – методом проб и ошибок вы точно подберете комфортный для вас режим работы датчика. Подробное руководство по настройке вы найдете в инструкции и без проблем справитесь с этой задачей.

Будьте уверены – правильный монтаж и настройка, а также подходящая схема подключения датчика движения избавят вас от проблем во время эксплуатации. Свет будет включаться при вашем появлении в зоне работы устройства и отключаться, как только вы покинете ее. В этом и заключается принцип корректной работы прибора, который служит для удобства и экономии. Можно снизить расход электроэнергии на 50 – 70%. Если вас заинтересовала возможность установки датчика своими руками, купить его вы можете в нашем интернет-магазине уже сейчас.

Читайте также:
Столик с подсветкой для пайки

Делаем простой проблесковый маячок своими руками

Простая мощная мигалка-двухполюсник на 12/24 Вольта.

Автор: Carabas
Опубликовано 26.12.2011
Создано при помощи КотоРед.

История вопроса: Мой шурин работает в автомастерской на фирме, которая занимается перевозкой тяжёлых и негабаритных грузов на близкие и дальние расстояния. Как-то зашёл у нас разговор по поводу жёлтых мигалок (что-то вроде изображённой на рис.1), которыми оборудованы эти «дальнобои». Шурин посетовал, дескать моторчики в этих мигалках в рейсах постоянно ломаются, что создаёт массу неудобств.

«Вот тут мы закупили для пробы 10 штук с электронной начинкой, распотроши одну и посмотри, может спаять таких несколько платочек и вставить в нерабочие мигалки?» – спросил он. Вскрытие показало наличие схемы с заслуженным таймером NE555 с обвязкой, раскачивающим мощный MOSFET и интегральным стабилизатором на 12 Вольт для запитки этого самого таймера. Воистину лень – двигатель прогресса. Перспектива рисовать – травить – сверлить меня не вдохновила и подумалось: а что, если порыться в тырнете, может есть что попроще? Неужели в 21 веке…?, когда космические корабли бороздят…? для какой-то мигалки ничего интереснее не найти?! Увы, не нашлось (а может плохо искал). Взгляд наткнулся на так называемые мигающие светодиоды (Blinked Led). Заинтересовало. Почитал о них подробнее. А вот здесь можно посмотреть: https://video.mail.ru/mail/obrazovanie-new/5107/7064.html где господа из «Чип и Дип» утверждают, что структурная схема светодиода (далее BL) соответствует приведённой на рис.2

Шурин с оказией был заслан на Митинский радиорынок с одним условием – «Купи парочку на пробу и чтоб моргали пореже, как ваши мигалки». В предвкушении он купил сразу десяток и выдал мне полную ТТХ словами: «Продавец сказал три вольта, двадцать миллиампер, светится – белым». Ну что-ж, ладно, перейдём к фазе экспериментальной теории. Была спаяна схемка (рис.3)

Резистор номиналом 3КОм (на всякий случай, чтоб не насиловать предельными токами). Осциллограф показал следующее: U1- 3.0V, U2- 7,0V практически не изменяются при варьировании Uпит. от 9 до 30 Вольт. Период следования импульсов около секунды. И чем же мы будем управлять этими импульсами? Поиск по даташитам привел к недорогому и популярному в широких кругах транзистору IRFZ44N. Вот его характеристики (рис.4)

Транзистор закрыт при U затвора до 3.5 Вольт, а уверенно открывается при напряжении 6 Вольт и выше. Причём при напряжении на затворе 7.0 Вольт сопротивление канала порядка 22 миллиОм, что есть очень даже неплохо.

Предполагаю (чисто теоретически), что резистор R1 на рис.2 нам вреден потому, что

суживает диапазон U2 – U1 (рис.3), а напряжение U1 нам важно с точки зрения полного запирания канала. Ставят же его только в BL с высоким напряжением питания (6V, 9V…). В нашем случае применён 3-х вольтовый BL, где вроде-бы резистор отсутствует. но конкретный BL мне попался случайно и поэтому здесь есть большой простор для экспериментов и в подборе BL, и в подборе MOSFETа.

Читайте также:
Генератор факельного разряда на 6П45С

Теперь переходим к фазе практики. Паяем схему (рис.5)

На всякий случай скажу, что короткий вывод BL подключается обычно к «-», но если перепутаете, не страшно – внутри установлен защитный диод D. Кстати это касается и транзистора. Правда переполюсовкой всей схемы увлекаться не стоит, поскольку диод в транзисторе имеет падение напряжения порядка 1 вольт и будет перегреваться при больших проходящих токах. Для начинающих радиолюбителей также замечу, что корпус транзистора нельзя «сажать» на массу. Вот, что у меня получилось: (рис.6)

В качестве нагрузки я использовал галогенку с двумя спиралями на 12 вольт (55 и 60 Ватт соответственно), включёнными последовательно. Источник питания – старенький ЛАТР с выпрямителем на 5 Ампер. IRFZ44N не нагревается совершенно (комнатная температура). Схема уверенно работает от 9 до 30 вольт (выше не пробовал, лампу жалко и ЛАТР тоже). Изоляция – бумажный скотч.

«И где же тут двухполюсник?» – спросите Вы. Когда я объяснял шурину схему подключения сего дивайса, то после очередного вопроса с его стороны понял горькую истину – моя схема колоссально сложная и грамотно подключить её сможет редкий электрик. Архиважно кардинально упростить схему подключения к нагрузке, посижу-ка я, подумаю ещё. И вот что надумал: (рис.7)

По сути это двухполюсник. Мы можем подключать нагрузку в нижнее плечо, в верхнее плечо и даже в оба плеча одновременно. Это может быть полезно, например в автомобиле, где лампы одним электродом жёстко привязаны к массе кузова. Можно управлять включением устройства дистанционно при помощи тумблера, например, включенного в разрыв R1. А вот так я его сваял в «железе» : (рис.8)

По поводу деталей:

Марки BL не знаю, приблизительные данные см. выше. При подборе MOSFETа сверяйтесь с характеристиками его затвора (GATE) по даташиту (Datasheet), ( GOOGLE – Ваш помощник).

С1- не ниже 10 мФ (лучше с запасом по ёмкости и по напряжению). VD1- любой кремниевый диод на 30V, 250 mA. А вот фотография лабораторного испытания двухполюсника : (рис.9)

Большущий Адронный Коллаэдр отдыхает.

Помогали мне , как обычно: Мурик и Тошка. (рис.10)

С уважением и наилучшими пожеланиями всем осилившим этот опус:

Мигалка на светодиодах

Собираем мигалку своими руками

У любого начинающего радиолюбителя присутствует желание поскорей собрать что-нибудь электронное и желательно, чтобы оно заработало сразу и без трудоёмкой настройки. Да и это понятно, так как даже маленький успех в начале пути даёт массу сил.

Как уже говорилось, первым делом лучше собрать блок питания. Ну а если он уже есть в мастерской, то можно собрать мигалку на светодиодах. Итак, пришло время “подымить” паяльником .

Читайте также:
Десульфатор или зарядка dedivan-а своими руками

Вот принципиальная схема одной из простейших мигалок. Основой данной схемы является симметричный мультивибратор. Мигалка собрана из доступных и недорогих деталей, многие из которых можно найти в старой радиоаппаратуре и использовать повторно. О параметрах радиодеталей будет сказано чуть позднее, а пока разберёмся с тем, как работает схема.

Суть работы схемы заключается в том, что транзисторы VT1 и VT2 поочерёдно открываются. В открытом состоянии переход Э-К у транзисторов пропускает ток. Так как в коллекторные цепи транзисторов включены светодиоды, то при прохождении через них тока они светятся.

Частота переключений транзисторов, а, следовательно, и светодиодов может быть приблизительно подсчитана с помощью формулы расчёта частоты симметричного мультивибратора.

Как видим из формулы, главными элементами с помощью которых можно менять частоту переключений светодиодов является резистор R2 (его номинал равен R3), а также электролитический конденсатор C1 (его ёмкость равна C2). Для подсчёта частоты переключений в формулу нужно подставить величину сопротивления R2 в килоомах (kΩ) и величину ёмкости конденсатора C1 в микрофарадах (μF). Частоту f получим в герцах (Гц или на зарубежный манер – Hz).

Данную схему желательно не только повторить, но и “поиграться” с ней. Можно, например, увеличить ёмкость конденсаторов C1, C2. При этом частота переключений светодиодов уменьшиться. Переключаться они будут более медленно. Также можно и уменьшить ёмкость конденсаторов. При этом светодиоды станут переключаться чаще.

При C1 = C2 = 47 мкф (47 μF), а R2 = R3 = 27 кОм (kΩ) частота составит около 0,5 Гц (Hz). Таким образом светодиоды будут переключаться 1 раз в течении 2 секунд. Уменьшив ёмкость C1, C2 до 10 мкф можно добиться более быстрого переключения – около 2,5 раз в секунду. А если установить конденсаторы C1 и C2 ёмкостью 1 мкф, то светодиоды будут переключаться с частотой около 26 Гц, что на глаз будет практически незаметно – оба светодиода будут просто светиться.

А если взять и поставить электролитические конденсаторы C1, C2 разной ёмкости, то мультивибратор из симметричного превратится в несимметричный. При этом один из светодиодов будет светить дольше, а другой короче.

Более плавно частоту миганий светодиодов можно менять и с помощью дополнительного переменного резистора PR1, который можно включить в схему вот так.

Тогда частоту переключений светодиодов можно плавно менять поворотом ручки переменного резистора. Переменный резистор можно взять с сопротивлением 10 – 47 кОм, а резисторы R2, R3 установить с сопротивлением 1 кОм. Номиналы остальных деталей оставить прежними (см. таблицу далее).

Вот так выглядит мигалка с плавной регулировкой частоты вспышек светодиодов на макетной плате.

Первоначально схему мигалки лучше собрать на беспаечной макетной плате и настроить работу схемы по своему желанию. Беспаечная макетная плата вообще очень удобна для проведения всяких экспериментов с электроникой.

Теперь поговорим о деталях, которые потребуются для сборки мигалки на светодиодах, схема которой приведена на первом рисунке. Перечень элементов, используемых в схеме, приведён в таблице.

Читайте также:
Полочная трехполосная акустическая система своими руками

Стоит отметить, что у транзисторов КТ315 есть комплементарный “близнец” – транзистор КТ361. Корпуса у них очень похожи и их легко перепутать. Было бы не очень страшно, но эти транзисторы имеют разную структуру: КТ315 – n-p-n, а КТ361 – p-n-p. Поэтому их и называют комплементарными. Если вместо транзистора КТ315 в схему установить КТ361, то она работать не будет.

Как же определить who is who? (кто есть кто?).

На фото показаны транзистор КТ361 (слева) и КТ315 (справа). На корпусе транзистора обычно указывается только буквенный индекс. Поэтому отличить КТ315 от КТ361 по внешнему виду практически нереально. Чтобы достоверно удостовериться в том, что перед вами именно КТ315, а не КТ361 надёжнее всего будет проверить транзистор мультиметром.

Цоколёвка транзистора КТ315 показана на рисунке в таблице.

Перед тем, как впаивать в схему другие радиодетали их также стоит проверить. Особенно проверки требуют старые электролитические конденсаторы. У них одна беда – потеря ёмкости. Поэтому не лишним будет проверить конденсаторы.

Кстати, с помощью мигалки можно косвенно оценивать ёмкость конденсаторов. Если электролит “высох” и потерял часть ёмкости, то мультивибратор будет работать в несимметричном режиме – это сразу станет заметно чисто визуально. Это означает, что один из конденсаторов C1 или C2 имеет меньшую ёмкость (“высох”), чем другой.

Для питания схемы потребуется блок питания с выходным напряжением 4,5 – 5 вольт. Также можно запитать мигалку и от 3 батареек типоразмера AA или AAA (1,5 В × 3 = 4,5 В). О том, как правильно соединять батарейки читайте тут.

Электролитические конденсаторы (электролиты) подойдут любые с номинальной ёмкостью 10…100 мкф и рабочим напряжением от 6,3 вольт. Для надёжности лучше подобрать конденсаторы на более высокое рабочее напряжение – 10. 16 вольт. Напомним, что рабочее напряжение электролитов должно быть чуть больше напряжения питания схемы.

Можно взять электролиты и с большей ёмкостью, но и габариты устройства заметно увеличатся. При подключении в схему конденсаторов соблюдайте полярность! Электролиты не любят переполюсовки.

Все схемы проверены. Посмотрите короткое видео с работой устройства.

Если что-то не заработало, то в первую очередь проверяем качество пайки или соединений, если собирали на макетке. Чтобы не удивляться: “А почему не работает?” – перед впаиванием деталей в схему их стоит проверить мультиметром, а лучше универсальным тестером.

Светодиоды могут быть любые. Можно использовать как обычные индикаторные на 3 вольта, так и яркие. Яркие светодиоды имеют прозрачный корпус и обладают большей светоотдачей. Очень эффектно смотрятся, например, яркие светодиоды красного свечения диаметром 10 мм. В зависимости от желания можно применить и светодиоды других цветов излучения: синего, зелёного, жёлтого и др.

Делаем мигающий светодиод своими руками: простейшие и сложные схемы

Мигающие светодиоды применяются в различных сигнальных схемах, в рекламных щитах и вывесках, электронных игрушках. Сфера их применения достаточно широка. Простая мигалка на светодиоде может быть также использована для создания автосигнализации. Надо сказать, что моргать этот полупроводниковый прибор заставляет встроенная микросхема (ЧИП). Основные достоинства готовых МСД: компактность и разнообразие расцветок, позволяющее красочно оформлять электронные устройства, например, рекламное табло с целью привлечения внимания покупателей.

Читайте также:
Как подключить светодиодную ленту. Подключение и монтаж светодиодной ленты своими руками

Но можно изготовить мигающий светодиод самостоятельно. Используя простые схемы, это сделать несложно. Как сделать мигалку, имея небольшие навыки работы с полупроводниковыми элементами, описано в этой статье.

Мигалки на транзисторах

Самый простой вариант – светодиодная мигалка на одном транзисторе. Из схемы видно, что база транзистора висит в воздухе. Такое нестандартное включение позволяет ему работать как динистор.

Светодиодная мигалка на одном транзисторе

При достижении порогового значения возникает пробой структуры, открытие транзистора и разрядка конденсатора на светодиод. Такая простая мигалка на транзисторе может найти применение в быту, например, в небольшой елочной гирлянде. Для ее изготовления понадобятся вполне доступные и недорогие радиоэлементы. Светодиодная мигалка, сделанная своими руками, придаст немного шарма пушистой новогодней красавице.

Можно собрать похожее устройство уже на двух транзисторах, взяв детали из любой радиоаппаратуры, отслужившей свой срок. Схема мигалки приведена на рисунке.

Схема мультивибратора на двух транзисторах для простой мигалки

Для сборки понадобятся:

  • резистор R = 6,8–15 кОм – 2 штуки;
  • резистор R = 470–680 Ом – 2 штуки;
  • транзистор n-p-n-типа КТ315 Б – 2 штуки;
  • конденсатор C = 47–100 мкФ – 2 штуки;
  • маломощный светодиод или светодиодная лента.

Диапазон рабочего напряжения 3–12 вольт. Подойдет любой источник питания с такими параметрами. Эффект мигания в данной схеме достигается поочередным зарядом и разрядом конденсаторов, влекущим за собой открытие транзисторов, в результате чего появляется и исчезает ток в цепи светодиода.

Светодиоды с миганием можно получить, подключив выводы к нескольким разноцветным элементам. Встроенный генератор выдает поочередно импульсы на каждый цвет. Частота моргающего импульса зависит от заданной программы. Таким веселым миганием можно порадовать ребенка, если установить устройство в детскую игрушку, например, машинку.

Неплохой вариант получится, если взять трехцветный мигающий светодиод, имеющий четыре вывода (один общий анод или катод и три вывода управления цветом).

Еще один простой вариант, для сборки которого понадобятся батарейки типа CR2032 и резистор сопротивлением от 150 до 240 Ом. Мигающий светодиод получится, если последовательно соединить все элементы в одной схеме, соблюдая полярность.

Мигающий светодиод

Если получается собрать веселые огоньки по простейшей схеме, можно перейти к более сложной конструкции.

Схема мигалки на светодиодах

Данная схема мигалки на светодиодах работает следующим образом: при подаче напряжения на R1 и заряжении конденсатора С1, на нем растет напряжение. После того как оно достигнет 12 В, происходит пробой p-n-перехода транзистора, что увеличивает проводимость и вызывает свечение светодиода. При падении напряжения транзистор закрывается, и процесс идет сначала. Все блоки работают примерно на одной частоте, если не учитывать небольшую погрешность. Схему мигалки на светодиодах с пятью блоками можно собрать на макетной плате.

Макет мигалки на транзисторах

Простая мигалка маячок со звуком

Мастер раскрывает секрет простой светодиодной мигалки со звуком, построенной своими руками на основе электроники от сломанных электронно-механических часов.

Читайте также:
Немного о трансформаторах

Как сделать мигалку со звуком своими руками

Для работы необходим механизм от электронно-механических часов с тикающим ходом. Подойдет и сломанный механизм, так как неисправность на 99% связана с повреждением механики. Обратите внимание, что механизм с плавным ходом для поделки не подходит. Отличить механизмы просто, если внимательно посмотреть на фотографии, то под корпусом тикающих часов хорошо заметно 3 больших шестеренки, а вот под корпусом механизма плавного хода присутствует четыре шестеренки. Процесс извлечения платы электроники хорошо показан на видео. Далее работу со схемой необходимо провести по следующей инструкции:

1. Извлекаем своими руками всю механику и откладываем ее в сторону. Провода от катушки можно оборвать.

2. Помечаем на плате полярность клемм питания. Аккуратно поддеваем плату электроники и извлекаем ее.

Два типа механизмов часов Механизм тикающего хода Демонтаж корпуса часов Плата электроники часов

3. Залуживаем припоем контактные площадки. Делать это надо быстро и аккуратно. Площадки при перегреве легко отслаиваются и потом обрываются.

4. Припаиваем проводники питания. Микросхема часов будет работать при подаче напряжения от 1,5 до 5 Вольт.

5. Припаиваем к плате звуковой излучатель типа TR1203 и любой светодиод в зависимости для каких целей вы хотите использовать полученную схему. Смотрите видео и фото схемы мигалки. Мигалка будет работать и каждую секунду должна моргать светодиодом, а затем пикать. Этим схема пожалуй и отличается от всех подобных мигалок пикалок. Можно подключить к схеме два светодиода и они будут последовательно и поочередно вспыхивать, чем не готовый контроллер для летающих моделей копий самолетов?

Схема часов Схема мигалки Проверка работы Мигалка со звуком

Как видите мигалка получилась очень простая в повторении. Схема может стать составной частью какого-либо сигнализатора, имитатора сигнализации, можно встроить устройство в игрушку, бутафорскую бомбу или, как указывалось выше в летающую модель. Небольшие габариты и вес позволят установить мигалку на воздушный шар заполненный гелием. Ночной запуск будет весьма эффектным.

Как сделать простую мигалку своими руками или схемы мигающих светодиодов

Схема мигалки на светодиодах работает без настройки и подойдет тем, кто хочет опробовать свои силы в радиоэлектронике. С ее помощью можно изготовить елочную гирлянду, «оживить» глаза игрушки, изготовить реле поворотов для велосипеда или имитировать работу сигнализации на автомобиле. Рассмотрим несколько простых и популярных вариантов схем, доступных для повторения своими руками.

Собираем простую схему мигающего светодиода на одном транзисторе

Самая простая схема мигалки состоит из трех радиоэлементов, а четвертый – светодиод. Хотя в качестве ключевого элемента представлен транзистор, его база не подключена, и полупроводник работает как динистор.

При включении питания конденсатор не заряжен, между эмиттером и коллектором присутствует низкое напряжение, динистор закрыт и не пропускает электрический ток, светодиод не горит. По мере заряда конденсатора напряжение на нем и на динисторе растет. В определенный момент динистор открывается, и конденсатор разряжается через светодиод. Далее цикл повторяется. Частота мерцаний светодиода определяется емкостью конденсатора и сопротивлением резистора.

Читайте также:
Интересный медицинский аппарат или как я лечил аллергию. Эффект диагностики или учение о противоположности

Всю схему легко разместить в спичечном коробке. Мигающий светодиод и провода питания удобно закрепить горячим клеем.

Если сделать несколько подобных светодиодных мигалок и включить их вместе, получится гирлянда. Так как радиоэлектронные элементы имеют определенный разброс параметров, светодиоды будут мерцать в хаотичном порядке. При этом мигалку можно изготовить в виде единого блока, как на фото.

Светодиодная мигалка с низковольтным питанием

Случается, что в качестве источника питания выступает батарейка с напряжением 1,5 или 3 вольта. Этого напряжения явно недостаточно, чтобы светодиод ярко светился. В электронных схемах питание на него чаще всего подается через транзистор, на котором падает 0,7 В, так что светодиод в таком случае не будет гореть совсем. В этом случае применяется специальная схема, где дополнительное напряжение создает электролитический конденсатор.

В момент включения питания оба транзистора закрыты, и конденсатор С2 заряжается через резисторы R3, R2, напряжение на нем растет. Конденсатор С1 заряжается через резисторы R1, R2, напряжение на нем также растет. В итоге открывается транзистор VT1, который, в свою очередь, открывает транзистор VT2. В результате источник питания и конденсатор С2 включаются последовательно, и на светодиод подается повышенное напряжение питания. По мере разряда конденсатора С2 светодиод гаснет. Далее цикл повторяется.

Популярная схема мультивибратора

Схема мигающего светодиода на симметричном мультивибраторе надежно работает сразу после включения питания. В ней удается легко регулировать периоды свечения и отключения светодиодов. Она хорошо подходит для имитации работы сигнализации автомобиля или в качестве реле поворотов для велосипеда.

В данном случае конденсаторы С1 и С2 последовательно заряжаются через резисторы R2 и R3 соответственно. При достижении определенного напряжения на базе одного из транзисторов он открывается и происходит разряд соответствующего конденсатора. При этом протекает ток через светодиод в коллекторе открытого транзистора. Процесс повторяется.

Частота и длительность мигания светодиода определяется элементами С1, R2 и С2, R3. Сопротивление резисторов можно изменять в пределах (5,1 – 100)кОм, а емкость конденсаторов — в пределах (1 – 100)мкФ. Подбирая названные элементы, можно добиться предпочтительного результата. Сначала устройство собирают на макетной плате, где удобно заменять и подбирать элементы схемы.

Все элементы – практически любого типа. Подойдет светодиод типа АЛ 3075, который очень похож на светодиоды сигнализаций. Различные вариации на базе схемы симметричного мультивибратора позволяют получить необходимый результат в зависимости от конкретных требований к схеме.

Например, светодиод может быть только один. Во втором плече мультивибратора в качестве нагрузки будет достаточно резистора порядка 500 Ом при напряжении питания до 12В.

В данном примере мы заменили транзисторы КТ315 « обратной» проводимости или n-p-n на комплементарные транзисторы КТ361 «прямой» проводимости или p-n-p. При этом понадобилось изменить полярность питания, светодиодов и конденсаторов. Кроме того, в схему добавлен переменный резистор, который позволяет регулировать частоту мигания светодиодов в определенных пределах.

Читайте также:
Регулятор мощности на тиристоре

В этом примере исключены нагрузочные резисторы. Они не нужны, так как при питании порядка 2,4 или 3 вольта и падении напряжения на открытом транзисторе 0,7 В светодиоды не будут перегружены.

В каждое плечо мультивибратора можно включить по два светодиода параллельно. При этом они будут загораться в обратном порядке, то есть тогда, когда соответствующие транзисторы будут закрываться. Однако в этом случае парные светодиоды могут светиться с разной яркостью из-за различия параметров.

В этой схеме включено по три светодиода в каждом плече схемы, и через них будет протекать одинаковый ток. Можно включать последовательно и ленту светодиодов, однако при этом придется поднимать напряжение питания схемы. Для простоты можно считать, что на одном из них падает порядка 1,5 В. При этом нужно использовать транзисторы и конденсаторы, рабочее напряжение которых выше напряжения питания схемы.

Включить светодиодную ленту, не повышая напряжение питания, можно с помощью этой схемы. При этом заметно возрастает ток через транзисторы, так что пришлось добавить выходные каскады на транзисторах средней мощности.

Эта схема позволяет реализовать «бегущие огни» довольно простым способом. Элементы R1-R4 и С1-С4 подобраны так, чтобы светодиоды мигали последовательно. Подбирая их, можно менять световые эффекты. Переменные резисторы R6,R7 позволяют регулировать частоту мерцания светодиодов.

Подборка элементов схемы и правила монтажа своими руками

Далеко не всегда есть в наличии детали, указанные на схеме. Их нетрудно заменить. Часто на схемах указаны транзисторы КТ 315Б, которые имеют небольшие размеры. Вместо них подойдут такие же с любой буквой, однако при высоком напряжении питания схемы надо убедиться с помощью справочника, что они выдержат. Практически во всех примерах подойдут почти любые транзисторы малой мощности.

При этом можно использовать элементы другой проводимости, изменив полярность подключения питания, светодиодов и конденсаторов. Конкретно у транзисторов К315 буквенный индекс находится справа, а у КТ361 — посередине корпуса. Резисторы и электролитические конденсаторы подойдут любые малогабаритные.

Если мы говорим об устройстве, имитирующем автосигнализацию, или реле поворотов для велосипеда, то монтаж лучше всего сделать на печатной плате, которую помещают в пластмассовую коробку. Два провода из коробки подводят к мигающему светодиоду, еще один соединяют с корпусом, а четвертый подсоединяют через тумблер к питанию + 12 В. Подключаться необходимо к цепи, которая находится постоянно под напряжением и защищена предохранителем. Монтажные провода должны иметь надежную изоляцию. Их необходимо хорошо закрепить и надежно защитить от возможного перетирания.

Автомобильный спецсигнал своими руками.

Любому автомобилисту известно, что использование устройств спец. назначения (например – спецсигналы типа СГУ, стробоскопы и т.п.) является незаконным и при остановке органами полиции можете быть оштрафованы на кругленькую сумму, плюс конфискация запрещенных приборов. Поэтому статья подготовлена для ознакомительных целей – обратите внимание на этот факт.

Итак, чем отличается стробоскоп от мигалки? по идее ничем, только типом мигания светоизлучающих диодов (ну или лампочек). Мигалку можно собрать за 5 минут с применением обычного мультивибратора, но это будет простой мигалкой, а не стробоскопом, которые устанавливаются на машины гос. служб. Но к сведению зрителя – стробоскоп это просто устройство, которые вырабатывает яркие световые вспышки, так,что простую мигалку тоже можно назвать стробоскопом.

Читайте также:
Самодельный ночной светильник "Облачко" на Raspberry Pi Zero

Как же собрать стробоскоп, принцип работы которого схож с мигалками, которые на полицейских машинах? Простым мультивибратором тут не обойтись, хотя наша конструкция по уровню сложности не сильно отличается от обычного мультивибратора.

Нам для начала нужен одноканальный генератор импульсов, он может быть любым, можно на базе мультивибратора или что еще проще – на основе легендарного таймера 555

Таймер подключается как низкочастотный генератор прямоугольных импульсов, частоту этих импульсов можно будет регулировать переменным резистором.

Выходные импульсы с микросхемы поступают на вход счетчика делителя. А затем начинается процесс “считывания”. Выходы счетчика переключаются поочередно, когда один из выходов открыт, все остальные закрыты.
Схема устройства.

Выходы микросхемы счетчика согласованы диодами. Три выхода подключены как один, делано это для того, чтобы получить тройную последовательность вспышек для каждого светодиода. Поскольку планируется подключение мощных светодиодов, выход был усилен дополнительным транзистором (в случае каждого выходе).

Таким образом, мы можем подключить даже довольно мощные нагрузки, к примеру лампы накаливания (12 Вольт), но с учетом того, что основная мощность будет рассеиваться на транзисторах и последние будут перегреваться и довольно сильно, поэтому подобрать транзисторы с током 10 и более Ампер и установить их на теплоотвод.

Диоды самые обычные – 1n4148 маломощные кремниевые выпрямительные диоды. Работает схема просто – таймер вырабатывает низкочастотные импульсы, которые поступают на вход счетчика. Каждый импульс будет последовательно открывать и закрывать выводы с счетчика, таким образом получаются мигания, а диодная развязка сделана для того, чтобы получить несколько миганий одного светодиода. К примеру – один из светодиодов будет мигать три раза, затем тухнет, затем тоже самое происходит со вторым.

Вторая схема работает точно по такому же принципу, только тут светодиоды подключены ко всем выходам микросхемы. Таким образом у нас получается эффект бегущей строки.

Светодиоды самые обычные (только не сборка), но при желании можно управлять нагрузками большой мощности, добавив выходные транзисторы в качестве усиливающего элемента, точно так, как это сделано в первой конструкции, ниже приведена схема бегущей строки.

В этой схеме точно таким же образом, как и в первой, можно регулировать частоту переключений светодиодов. Этот вариант тоже является спецсигнальным устройством, усилив выход и заменив светодиоды на сверхяркие , получим незаконный прибор, так, что советую собрать только для ознакомления, по крайней мере не использовать в машине.

Печатная плата для первой схемы доступна для скачивания здесь. Удачи!

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: